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Abstract

As intelligent environments (IEs) move from simple kiosks and meeting rooms
into the everyday offices, kitchens, and living spaces we use, the need for these
spaces to communicate not only with users, but also with each other, will become
increasingly important. Users will want to be able to shift their work environment
between localities easily, and will also need to communicate with others as they
move about. These IEs will thus require two pieces of infrastructure: a knowledge
representation (KR) which can keep track of people and their relationships to the
world; and a communication mechanism so that the IE can mediate interactions.

This thesis seeks to define, explore and evaluate one way of creating this infras-
tructure, by creating societies of agents that can act on behalf of real-world entities
such as users, physical spaces, or informal groups of people. Just as users interact
with each other and with objects in their physical location, the agent societies in-
teract with each other along communication channels organized along these same
relationships. By organizing the infrastructure through analogies to the real world,
we hope to achieve a simpler conceptual model for the users, as well as a commu-
nication hierarchy which can be realized efficiently.

Thesis Supervisor: Howard E. Shrobe
Title: Principal Research Scientist, MIT CSAIL
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Chapter 1

Claim

1.1 Background

The field of pervasive computing has expanded rapidly over the past decade, since

Mark Weiser first began to articulate a vision of technology that will be incorpo-

rated seamlessly into the world at large [44]. Weiser’s descriptions of these tech-

nologies suggested a move to a future where computation is embedded in many

of the everyday components that surround us in our daily lives, from active Post-

It notes to large wall-mounted intelligent blackboards. Over time, the notion of

taking a space and equipping it with this kind of technology has become known

as pervasive or ubiquitous computing (“ubicomp”), and has driven research into

how this technology can be used to assist people going about everyday tasks.

When implementing technologies to accommodate this vision, researchers of-

ten imagine implementations that can span and unite a large spectrum of appli-

ances, ranging from small personal handheld devices (such as personal organiz-

ers or cellphones) to rooms or buildings that can recognize and respond to their

inhabitants. As such, we need technologies that can collect and incorporate the

information provided by such disparate hardware, and allow the users to interact

with the information and devices available to them. Ideally, they will accomplish

this with a minimum of intrusion into the user’s activities.

In the space of these ubiquitous computing applications, a common subfield
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is that of IEs, focusing on the implications of humans interacting with highly-

instrumented spaces. These spaces can include business offices, conference rooms,

laboratories, domestic living rooms, and even kitchens. The sensors used to re-

trieve information about these environments are also varied, employing cameras,

microphones, radio-frequency identifiers [39], floor-mounted pressure sensors [14],

or simple detectors within the many hinges and switches such environments con-

tain. To provide a reactive component to the space, the computing systems behind

the IE often have control over devices in the room, such as lights, thermostats,

speakers, computer displays, or even more advanced devices that can display in-

formation on any surface in the room [35]. They may even make use of a person’s

portable devices, such as PDAs, laptops, or cell phones. Although the spaces and

devices change, the research focus has a common thrust – the sensors are used to

detect the activities and desires of the human occupants, and the devices are used

to provide the humans with information they seek, or to adjust the environment to

their needs.

Because these systems are designed to be augmented living spaces, they of-

ten seek to assist with human-human communication as well as with the direct

human-environment interactions. However, such communication also needs to

recognize that the spaces we live and work in often serve as private refuges, and

thus must temper the desire to facilitate communication with the world with the

individual’s needs for privacy and peace. As such, many IEs utilize agent systems

that operate on behalf of the users, to mediate and moderate the communication,

or even respond on behalf of their user without interrupting them.

Most research in the field of intelligent environments (IEs) confines itself to ex-

ploring the infrastructure for a single environment, and pays scant attention to

exploring the possibilities and requirements of a multitude of IEs acting in concert

and in communication with each other. Thus multiple-IE focus becomes even more

essential as the technology that enables such environments moves from contained

spaces such as offices and laboratories and into more group-focused locales such

as conference rooms or common areas, and even onto personal handheld devices.
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This thesis describes an implemented infrastructure for IEs that can support hun-

dreds of people, and interoperate with other environments to support the user’s

needs.

Imagine, if you will, an administrative assistant for a research group, wishing

to announce to the local graduate student population that some food that was left

over from a presentation is now being made available in a nearby lounge.

Figure 1-1: Ellie using a kiosk to contact graduate students.

Ellie carries the food into the common area, places it in view of the lounge’s

cameras, and then turns to a nearby kiosk to send the message. After turning on

the kiosk’s microphone, she asks the kiosk to “please tell the graduate students

that food is available in the lounge.” The kiosk briefly informs her of how many

people the message will reach, and Ellie continues on with her day.

Figure 1-2: Max receives the message on a cell phone.

About this time, Max is attempting to grab a quick snack from a vending ma-

chine near to the lab. As he stares at the wealth of choices available to him, his
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phone vibrates with the message from Ellie, informing him about the leftovers

and thus potentially rescuing him from a lunch of overpriced chips.

Figure 1-3: Using a cellphone to explore additional information about a message.

Max starts up an assistant application on his phone, through which he can ask

questions like “how many people have seen this message,” to decide whether it’s

worth pursuing this particular quarry. He also asks the system to “show me a

picture of the lounge,” which then requests that the kiosk’s webcam snap a picture

of the room and send it to him on his handheld. Max is both intrigued and starving,

so he hurriedly makes his way towards the lounge before too many other graduate

students receive the message and get a similar notion.

Although there are certainly research questions to be raised at the levels of user

interface in this scenario (e.g, speech parsing and understanding, as well as inter-

face design for the kiosk and cellphones), for this thesis I focus on the machinery

necessary for the underlying infrastructure to perform the message delivery.

• Ellie simply says “tell the graduate students” about the food in the lounge.

She clearly doesn’t mean all the graduate students in the universe, so there’s

an implication that she’s referring to a subset of them – in this case, the grad-

uate students who are associated with the lounge, perhaps only members of

research groups sharing that space.

• Ellie doesn’t bother specifying which lounge she’s currently located in – the

kiosk she is using has a clear notion of where it is located and therefore which

lounge is meant. However, even if Ellie were using a handheld like Max’s,
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there should be no change in her interaction; the handheld should also have

knowledge of its current location and provide that information automatically.

• The message really shouldn’t be delivered to every possible graduate student

associated with the lounge; instead it should be limited to those (like Max)

who are near enough to act on the message in a reasonable time frame. For

example, sending a message about free food to a grad student currently at-

tending a conference thousands of miles away is useless.

• This particular message is effectively time-limited; even when the student is

nearby, if he won’t see the message for three hours, the food will be gone and

the information wasted. Thus, it would be nice to deliver this information as

swiftly as possible, and the system should be able to use whatever tools are

at hand to do that. If Max were at his desk, it might be faster to pop up the

message on his display.

• Despite the time-sensitive nature of this message, it isn’t really an urgent

message, and does not have to be delivered to every recipient as quickly

as possible, and shouldn’t intrude in situations where the recipient is other-

wise occupied. For example, using a conference room display in an ongoing

meeting in order to announce to a meeting attendee that there is food nearby

would be poor “ettiquette” for an IE. However, there are times where in-

trusive behavior would be absolutely appropriate – if Ellie were announcing

an emergency in the building, it should be delivered to all the recipients as

quickly as possible.

• Users should be able to receive this information any way they like. Max

may prefer to get messages on his cellphone, even if he’s seated at his desk.

Others may have different preferences; the message should be adapted and

delivered to each recipient according to his or her wishes.

• Just because Ellie is trying to deliver a message to Max, it doesn’t necessarily

follow that Ellie needs to know precisely where Max is, or even that he’s not
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at his desk. In fact, Max may want to keep his whereabouts private except

for when he specifically allows people to know what he’s doing.

In sum, we need systems that can:

• Respect people’s right to control their own resources, by ensuring that re-

sources are controlled only by the resource’s owner(s), and can enable restric-

tions on the resources as they see fit.

• Respect people’s privacy, by limiting access to private information (such as

a person’s location), and only allowing such information to be retrieved from

the outside by querying data sources controlled by the person in question.

• Adapt to changing conditions, so that the environment can adjust its actions

dependent on what situation a user finds himself in, and

• Be sensitive to individual preferences, such that different people can guide

the system in different ways based on their own personal needs.

How can we create the tools and infrastructure that can provide this level of

robustness and adaptivity?

For one, we need a method of defining user preferences and using them to al-

locate resources such as displays or handheld devices based on the user’s desires

and the necessities of the current application. Ideally, such necessities should be

able to make resource decisions based on qualities like urgency or speed. We also

need to have an understanding of people’s locations and their current situations,

so that we don’t end up intruding on a meeting at the wrong time. Such under-

standing also extends to maintaining knowledge of people’s relations to locations

and to each other, to determine, say, the grad students who are associated with the

lounge. Underlying this is the need for storage structures that can organize all this

information and easily retrieve the information we need.

We argue that an infrastructure can achieve the necessary levels of adaptivity

and robustness by providing:
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1. Agent communications and structures that mirror the social and physical in-

teractions they represent.

2. A collection of user preferences, mapped into utility functions, being used to

fuel the environment’s decisions about service mapping and resource man-

agement.

3. An “awareness” of the state of the world, which can be used to further drive

context-based preference decisions.

4. A semantic memory that defines and describes the resource and preference

requirements.

The next section goes into more background on intelligent environments and

explores these items in more depth.
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Chapter 2

Introduction

As noted in the previous section, the entire field of ubicomp continues to grow

rapidly. More and more research and development goes into technologies that

embed processors in automobiles, medical equipment – even the components of

furniture [4]. Indeed, Ray Kurzweil recently noted that Moore’s Law is only the

latest paradigm to show an accelerating trend, and that computing power per dol-

lar has been continually expanding at a greater and greater rate, suggesting that

the 21st century will contain a thousand times greater technological change than

its predecessor[21]. Unfortunately, human productivity has not been changing at

as quick a rate, and this suggests that we will soon reach a time when the criti-

cal resource in the ubicomp system is not the capabilities of the systems, but the

people who use them.

2.1 Contribution

The fundamental contribution of this thesis is architectural, in particular it pro-

vides an architectural framework for human-centered pervasive computing en-

vironments on the scale of a large research lab or medium-size corporation. We

regard the role of an architectural framework as three-fold – 1) It should provide

modularity such that independent components with little knowledge of one an-

other’s details can nevertheless be assembled into a system exhibiting coherent

23



global behavior, while 2) providing a reasonable level of performance for the sys-

tem, and 3) guaranteeing that certain invariant properties, including the four men-

tioned at the end of the previous chapter, are respected throughout the system

while requiring minimal effort from the developers of the individual components.

What the architecture provides to enable this is a set of interface guidelines and

infrastructure, a set of built-in components that manage the task of maintaining

the global invariants.

In most cases, one tends to assume that the optimality criteria and invariants

that an architecture will attend to are internal to the computational system, for

example integrity of its data structures, or throughput of its processes. However,

our concern is with human-centered, pervasive computing in which people play

a central role. Thus, the issues of concern to us are those that deal with human

social organization and the design criteria reflect the effectiveness and satisfaction

of individual participants in the system. Thus we focus on two items – the ability

of the system to adapt to individual users’ preferences and the enforcement of a

particular social norm: decisions over the use of resources should be made by those

who control the resources, and decisions over how a task is performed should be

made by the person involved in the task.

The system presented here, Hyperglue, provides infrastructure and interfacing

guidelines that are able to achieve these goals. Of far less concern to us are classic

questions of efficiency, since we see the critical resource in all future systems as

being human attention while computational resources continue to be increasingly

inexpensive. However, we believe that the structure we adopt also has classical

computational benefits since it provides a modular structure that reduces the need

to transmit information into global repositories or to engage in decision making

with centralized single points of failure.

It has been noted to the author that in some ways, Hyperglue (or something

like it) may be the “world wide web” for the rest of the processors in the world.

Although the web provides a widely-used architecture linking the information in

various computers together, it only works on a small percentage of the processors
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built each year; the rest go into automobiles, medical equipment, projectors, and

other devices. As these processors take over more and more functions, and start

being connected into networks of wider and wider scope, there need to be means to

control and coordinate them effectively. We require an infrastructure that allows us

to locate these devices, segment them into controllable chunks, and operate them.

Hyperglue is a design that aims to achieve this.

2.2 An Infrastructure Overview

Recall the four pillars of infrastructure mentioned in Chapter 1.1:

1. Agent communications and structures that mirror the social and physical in-

teractions they represent.

2. A collection of user preferences, mapped into utility functions, being used to

fuel the environment’s decisions about service mapping and resource man-

agement.

3. An “awareness” of the state of the world, which can be used to further drive

context-based preference decisions.

4. A semantic memory that defines and describes the resource and preference

requirements.

These represent the broad strokes of a design for a system that will, as noted,

respect privacy for users and their rights to control their own resources, as well as

adapt to changing conditions and be sensitive to variations in preferences.

To flesh out the design more fully, we divide agents into broad groups, based

on the real-world entity for which they are acting. Such agent groupings are often

termed societies, harking back to Marvin Minsky’s definition of society in The So-

ciety Of Mind [30]. The real-world entity for which a society might act could be a

user or a spatial environment. Where appropriate, we extend the concept to more
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abstract groupings of real-world objects, such as user groups or the environments

that exist on the same floor of a building.

Once these societies are in place, we can use them to provide abstraction bar-

riers that limit the need for communications that pass across the societal bound-

aries. When two different societies need to communicate, they do so by taking

into account the preferences of the real-world entity they represent, and use that

information to negotiate compromises that serve both sides well.

One means of requesting resources is to specifically request resources based on

precise device descriptions. In order to handle negotiation correctly, however, we

would like to move the mechanism of resource lookup towards one of abstract ser-

vice mapping, which will allow agents to request, for example, a generic “display”

service with contextual parameters. Doing so allows for a more flexible structure,

and allows a cooperating society to provide many different possibilities to choose

from when a service is requested.

Although the last item, the semantic memory, may seem to be an obvious com-

ponent to those in the artificial intelligence community, it is actually one that is

rarely explored within the field of intelligent environments. Most research into IE

infrastructure relies merely on developing a simple repository of data, rather than

trying to capture the meaning and relationships in a more general way.

In successive chapters, we will examine each of these components in more de-

tail, and explore the design and implementation of Hyperglue, an agent-based sys-

tem that uses these concepts to drive the development of a working infrastructure

for multiple spaces.

We start, however, by examining a simple set of scenarios, and look at how

existing IE infrastructure projects might handle these user needs.

2.3 Scenarios

As an example of the breadth of interaction that an IE should be able to support,

consider the following scenarios:
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2.3.1 Scenario 1: Talk Announcement

Alan is planning a practice talk for an upcoming conference. He fills out a

simple form, and uses it to invite a few people (Beth, Charlie, and Diane) to

attend the session and give feedback. Submitting the form causes a notifica-

tion to be sent out to all three recipients, requesting the favor of a reply.

Beth is in a conference room. She has registered a preference to receive

text messages as spoken utterances over speakers wherever she is, but as it

happens, she’s currently engaged in a small meeting in this room. Since her

location is marked as being in “meeting mode”, the system uses a different

preference, popping up a small icon onto her laptop screen, which she can

open at her leisure to retrieve the message.

Charlie is currently out of the office. His preferences state that he prefers

email whenever he receives a message while out and about, so the system

takes Alan’s message and funnels it to his inbox.

Diane is out of the office as well. Normally her preferences are the same

as Charlie’s; however, she has added an additional preference that says that

she should be contacted by phone if the matter is even mildly urgent. Since

Alan’s message indicates he would like a response as soon as possible, the

request is routed to her phone through a text messaging service.

2.3.2 Scenario 2: Moving the Practice Talk

Alan is holding the practice talk at his desk, since only a few of the people he

invited have actually shown up, and there’s room for them to crowd around.

The monitor on his desk is being used to display slides, as well as a small

application which displays some useful utilities, such as a timer that lets him

know how long he’s spent on each slide.

After he’s been talking for a while, some stragglers show up late. Alan

decides to move the talk into a nearby conference room, where there will

27



be more room for the participants. When he does so, the application he is

running automatically reconfigures for the larger space, switching the slides

to a full-screen, and allocating the slide timer view to a separate, smaller LCD

screen. In addition, the application starts to take advantage of the greater

capabilities of the conference room, using permanent cameras to capture a

record of the talk.

2.3.3 Scenario 3: Free Donuts

This is essentially the scenario we describe in Chapter 1.1. Ellie is delivering

a message to a large set of people, the exact membership of which is depen-

dent on people’s proximity to her current location, as well as their association

with the location. For example, graduate students are chosen based on their

membership in labs that are adjacent to a lounge, but also weeded out based

on their proximity to the point in question.

2.4 Scenario Analyses

In existing systems for IEs, such as iROS[36], Metaglue[8], or OAA[25], performing

these tasks is a matter of looking up an appropriate resource in some form of global

directory, then sending a request to that resource. For example, an agent might try

to locate a “message receiver” agent for each recipient, and upon finding one in the

directory, would perform a “deliver message” request to complete the operation

for each destination.

However, in order for the scenario to work in current IE infrastructures, a num-

ber of questions need to be considered. Let’s examine some of the issues involved

in these interactions in more detail.

1. When Alan contacts Beth, how do we find out what devices are available in Beth’s

vicinity? Several methods have been proposed for answering this question,
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which often fall broadly into two categories. In systems that operate on a

single-request model, such as MIT’s Intentional Naming System [2], all de-

vices that are in some way associated with Beth advertise that association to

a global network, so that a single request can retrieve all of the appropriate

recipients. Alternately, the methods can use two or more requests to get the

information – Beth’s software constantly advertises her location to the net-

work, and Alan’s agents must first look up her location, and then perform

a separate search to find a set of candidate devices. Both of these methods

require that all devices be advertised globally, and that Beth’s location be

constantly advertised and updated to reflect Beth’s current situation.

2. How can Alan and Beth share control of the interaction? Once the agents working

for Alan have located a device for the communication, we still need to make

sure that Beth, or agents working on her behalf, can maintain some control

over the interaction. Just as we accept an incoming phone call by picking up

the receiver, Beth must have the ability to decide whether or not to accept

an intrusion into her work. This can be done manually by Beth or, as in the

scenario, automatically denying the use of a device under certain conditions.

This ability should also extend to the point of being able to automatically

refuse all interruptions for a period of time. In a device-centric model of the

world, Beth would need to continuously broadcast her preferences to any

device she might use, so that the devices would know whether to allow an

incoming connection.

3. How do we avoid conflicts with Beth’s work or other activity? Note in the first

scenario that Alan’s message appears on Beth’s laptop. One can easily see a

scenario where Beth’s laptop is currently engaged (for example, projecting a

slide during the meeting), and it would be inappropriate to take over even

a portion of the display for a message. But how can Alan’s agents discover

which display is available for use? If the agents are using a global directory

service to find the available display devices, then Beth’s display devices must
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be constantly updating their availability status so that Alan’s agents can

choose the correct resource. And what if Beth’s handheld is unavailable?

How can Alan’s agents decide where to display the message?

4. Who decides how information is presented? As we’ve seen in the other parts of

the notification scenario, recipients may have strong preferences about how

they process information; for example, a short text sentence might best be

conveyed as spoken utterances rather than through a display. If Beth were in

her car, she may prefer that all information be emailed so that she can peruse

it once she’s arrived safely. Alan’s agents would need to be able to discover

these preferences, and alter their behavior accordingly. Doing so would re-

quire that Beth make her preferences publicly available to any agent system

making communication requests.

5. How does the agent system take into account the environment’s access control issues?

Regardless of what the agents for Alan and Beth wish to do, Beth’s conference

room will need to have mechanisms in place to prevent unauthorized access

to the devices by malicious agents. Without such a mechanism in place, one

can imagine the IE’s equivalent of “spam,” where marketers are able to pop

up advertisements on any available display space. The agent system needs

to be able to filter out any unwanted requests, while at the same time giving

Beth the necessary privileges to do her work and accept connections and data

from Alan.

Privilege is a double-edged sword; the data Alan is sending might be confi-

dential or otherwise protected, and thus should not be displayed on the walls

of a public, shared workspace like Beth’s. The environment itself has certain

rules, and Beth needs to make sure those rules are respected. In this case,

Alan’s agents must be able to mark the information as being removed from

public consumption, and then have that request respected by the devices on

the far side.

All the issues above point to a common problem; they are symptomatic of the
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lack of a modular structure that partitions the system’s knowledge into well-suited

chunks and allows the various software elements to deal with the knowledge ap-

propriately. While modularity is often a hard concept to define, it at least is char-

acterized by the existence of boundaries within which knowledge is encapsulated

and which do not often need to be violated. These boundaries also provide a sense

of coherence to the knowledge within the boundaries. Thus, our biggest challenge

is to find an appropriate modular structure for the system’s knowledge. As we

develop such a structure, we are also guided by concerns for four challenges: scal-

ability, access control, customizability, and adaptivity:

2.4.1 Scalability

A common trait of IE infrastructure systems seems to be a central coordination

directory service like Metaglue’s CatalogAgent or OAA’s Facilitator[25]. When

dealing with the simple case of a single user operating in a single environment,

there doesn’t tend to be large numbers of similar agents, and so this design can

perform reasonably well.

However, such a design will inevitably yield scalability problems when the full

needs of highly distributed environments enter the picture. For example, many of

the agents that were working for the single user or the single environment now

need to be duplicated for each user or for each space that might want to commu-

nicate. Similarly, there are cases where an environment may have many different

methods of fulfilling a request, and for each of these methods an extra agent may

be inserted into the directory. A typical environment can have well over a hundred

agents operating within it, and a building might be populated with a hundred or

more such environments. If we want to have different environments communi-

cate between buildings, we might soon enter a realm where there are hundreds of

thousands of agents trying to use a single directory service. As a result, network

contention can cause access times to rise, and the larger directory sizes can cause

lookup times for each access to rise as well. Although clever tricks in engineering
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might alleviate some of these concerns, the central service acts as a choke-point on

the system.

Similar problems occur with a publish-subscribe model such as iROS’s Event-

Heap architecture[36]. As the number of environments and users increases, so does

the number of publishers, and the heap must do extra work to handle the larger

number of requests and parcel information out to the larger number of subscribers.

As we move towards larger multi-user systems, we need a better solution to

this problem. We propose that one way of handling this more efficiently and

avoiding the scalability issues is to group agents together so that agents are di-

rectly aware only of the small subset of agents that they work with most closely,

and other agent communication is funneled through access points for each group.

I refer to this as the “society” model, and describe it further in Chapter 4.

2.4.2 Access Control

As noted in the questions above, access control issues abound, since there is often

a dichotomy between the desires of the person who wants to send information

and the desires of the recipient. For example, the sender may wish to utilize a

speedy connection to ensure that the recipient sees the information immediately,

whereas the recipient may not wish to be constantly distracted with information

that is irrelevant to his or her task at hand.

To address these concerns, the agent system must provide methods of access

control and negotiation, which will allow agents to guide communication and in-

teraction so that one user cannot impose behaviors on another’s agents without

proper consent. A large part of this is also handled by compartmentalizing agents

through the society model (described further in Chapter 4). Additional pieces

are provided through the creation of abstract services (see Chapter 5) that can,

if needed, select specialized resources based on access limitations, or deny access

outright.
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2.4.3 Personalization and Customizability

The scenarios often make use of the user’s preferences. People tend to have differ-

ent approaches to their work and communication methods; the IE should respect

those differences, and allow the user to guide the system by specifying device pref-

erences or otherwise customizing their working environment.

In addition, customizability of applications allows us to perform application

reconfiguration on the fly, so that displays can either be shared or reorganized to

best make use of the devices that are present.

The abstract services (Chapter 5) briefly mentioned above can perform part of

this task, but will need to coordinate with a storage mechanism that records user

preferences and acts on them (see Chapter 6).

2.4.4 Adaptivity

The system must be able to recognize changes in the state of an agent-controlled

object, and adjust to those conditions. Imagine, for example, a projector whose

bulb has exceeded its lifespan, and hence gone dead. If an agent in the system

desires this resource, there must be a means of either shifting control to a less de-

sirable resource, or of failing gracefully and informing the appropriate entity of the

condition.

For this, we need to be able to have resources that react to the current contex-

tual parameters of the world. In addition, we require both the aforementioned

abstract service definitions (Chapter 5) and a semantic memory that can record the

contextual parameters for the selections (Chapter 6).

2.5 Infrastructure Overview

To meet these four challenges, I have designed and built an agent-based software

system that is capable of handling the interactions in the described scenarios. The

individual components of this system will be described more fully in the following
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Scalability Access Control Customization Adaptivity
The “society model” X X
Preference mapping X X
Context Handling X
Semantic Memory X X

Figure 2-1: A small table mapping issues in intelligent environments to the com-
ponents of this infrastructure that most fittingly addresses each of them.

chapters, but let us briefly outline the components of the architecture:

• Agents organized into societies that have counterparts in the physical world,

whether that counterpart be an environment or a person (or aggregates of

these).

• Each of these societies contains agents that perform several vital functions.

These include: resource management, which can take a simple call for a piece

of functionality and translate it into an agent that can fulfill that function;

service mapping, which can take higher-level requests and turn them into

collections of agents or plans to perform more complex tasks; semantic data

management, for storing and querying information about the world; and lo-

cal catalogs for managing the agents in the society.

• In addition, each society maintains an ambassador which can locate and com-

municate with the other societies, turning local requests into remote ones by

forwarding them when appropriate.

Let’s briefly examine how this architecture can be used in the messaging sce-

nario. First, there are agents collected into societies for Alan, Beth, Charlie, and

Diane. Alan’s society (or more precisely, the agents within it) first formulates a

request for a “message delivery” service. This service has certain parameters at-

tached, specifying that the message is textual in nature, and indicating that the

message has a low level of urgency. The same request is prepared to be sent to

Beth, Charlie, and Diane.

34



Alan’s society recognizes that Beth, Charlie, and Diane are all separate societies,

so his service mapping system delegates the request to the remote societies. As

such, his ambassador locates the ambassadors for these separate societies, and then

forwards the same “message delivery” request on to each of them.

Charlie’s ambassador, for example, receives the request, and then forwards it

on to his local service-mapping engine. Charlie’s engine uses the local semantic

data storage to examine Charlie’s personal preferences, and uses them to find a

delivery plan which satisfies the parameters. A set of suitable plans are returned

to Alan’s service mapper, which chooses an appropriate plan incorporating Alan’s

preferences.

In this case, Charlie’s returned plan is just a simple “deliver a message” plan,

which requires a simple delivery resource. Alan’s service mapper executes the

request for this resource, which is again forwarded to the remote society. Charlie’s

resource manager receives the request, uses the semantic data store to recognize

that Charlie is currently out of his office, and thus provides the location of an agent

that delivers the message to his e-mail. The ambassador provides a handle for

this agent back to Alan’s society, and Alan’s agents then deliver the text directly

through this handle. Charlie’s email delivery agent then takes responsibility for

providing the information to his inbox.

In effect, all the issues that we need to deal with are concerned with the man-

agement of the system’s knowledge including its modularization, distribution,

communication, encapsulation and storage. Having the right knowledge in the

right place facilitates adaptivity and context sensitivity. In looking at these issues

we need to be concerned with scalability (how do we manage large amounts of

changing knowledge without an unreasonable amount being in any one place) as

well as access control (how to avoid divulging information that one would prefer

be kept private and that doesn’t need to be divulged).

We deal with these issue by structuring the system around agent societies each

equipped with facilities for remote communication, semantic data storage for rec-

ognizing and acting on contextual elements, and service mapping and resource
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management engines that use the context appropriately; and that work with one

another by finding a service mapping that best satisfies their mutual preferences.

The following chapters explore existing agent systems, and then move on to

describe the thesis components – society model, service mapping, and semantic

memory – in more detail, discussing details of an implementation that allows the

functionality in the scenarios to be accomplished.

2.6 Roadmap

As a “roadmap” to the rest of this document, let’s briefly examine Scenario 3 in

detail and provide pointers to the chapters or sections of the thesis which define

the necessary infrastructure in more detail.

Ellie starts by instructing the lounge’s kiosk to tell nearby people that food is

available. The kiosk’s user interface translates this spoken utterance into a request

to send a “food is available” message with appropriate parameters which describe

the necessary urgency (not very) and timeliness (high, because the food might soon

be gone). This request is handled by whatever software is running on behalf of the

lounge (Note that when this section refers to the lounge or another non-mobile

entity performing an action, this is what is intended.)

The software associated with the lounge contains knowledge describing its re-

lationship to the other groups in the area, based on a semantic network (detailed

in Chapter 6). Included in this knowledge are indications that there are a set of

groups associated with this lounge, so the knowledge base contains assertions such

as “the AIRE group is adjacent to Lounge 32-241” and “TiG is adjacent to Lounge

32-241.”1 Using this information, the lounge identifies a set of groups that should

receive this message.

At this point, the local lounge must forward the request on to the different

1A more thorough system might actually just separate the physical layout of the building from
the group assignments, saying that “room 32-221 is adjacent to room 32-241” and “Group AIRE is
in room 32-221”, and rely on an underlying system to bind those two assertions into the group-
adjacency relationship. For this section, we assume that such a group-adjacency relationship can
be easily found.
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groups. First, it must locate software running on behalf of these groups in order to

communicate with it, and it does this by using a directory service that can find a

“society” acting for those groups (detailed in Chapter 4).

From each of these groups, the lounge requests a message-sending service, pro-

viding the necessary service parameters that were needed in terms of urgency, etc.

Using these parameters as a guide, the lounge and group societies determine the

most appropriate service (detailed in Chapter 5) and then the lounge executes the

agreed-upon service by providing the message as an argument. The actions for

performing this can be accomplished through any agent framework (an example

of which is described in Chapter 3).

In the case of the individual groups, there is really only one service that makes

sense (no matter what the service parameters) – one which multi-casts the message

to the individual members of the group, keeping the same service quality parame-

ters that were originally requested. To this end, the group then performs the same

operation that the lounge did – locating a society for each user, and working with

the user’s service request engine to determine the best possible means for sending

the message on to the user, and then executing the service with the appropriate

parameters.

As such, the AIRE group’s society first locates Max’s society and requests a

message-sending service with the above parameters (low urgency, high timeli-

ness). Max’s society knows Max’s current location – even if that knowledge is

limited to simply being aware that he’s not at his desk. This society also has a

number of means of getting a message to Max; the message can be sent to his

phone, sent over email, or displayed on his desktop. Since Max is not currently at

his desk, the quality of service for phone service is high timeliness mixed with high

urgency; email has a medium timeliness, and desktop displays can only guarantee

low timeliness and low urgency.

Since Max has set up preferences (see Section 5.2) that state that he receiving

messages quickly is more important than concerns over the urgency or the costs

of using the cellphone, the service mapping engine selects and provides a pointer
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to Max’s phone delivery service as the most appropriate service, and provides a

handle to the service to the requesting AIRE society. AIRE then uses that service

to forward the message on to Max.
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Chapter 3

Metaglue – An Overview

Before we begin to explore more fully the details of the design outlined in sec-

tion 2.5, let us first examine existing IE agent systems, and in particular the Meta-

glue framework developed at MIT. The Metaglue framework will be explored in

more detail because it serves as the basis for this thesis’s work, and was used to

show how the Hyperglue design can be implemented by modifying a proven agent

system. Thus, this thesis can also serve as a model for extending other agent in-

frastructures, such as Open Agent Architecture (OAA), iROS, or Hive, along the

same ideals.

3.1 Notes on Agent Systems

There are a variety of different distributed agent systems being developed and

used for intelligent environments. Among these systems are OAA [25], the Hive

agent system [29], iROS and the EventHeap architecture [36], and the Java-based

Metaglue [8] system developed at MIT. All of them – indeed, distributed object

systems in general – provide functionality for performing several basic tasks:

Name Mapping In order to reference objects that could exist anywhere in the net-

work, a naming convention and lookup mechanism is required. Because of

this, agent systems require the presence of an ontology (whose level of for-
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mality – or lack of formality – is often defined by the system’s design), which

can be used to provide a simple means for agents to refer to objects. The

lookup mechanism provides a means of taking such ontological references

and translating them to network addresses or other means of accessing the

object across the network.

Object Creation Since such systems normally rely on highly distributed opera-

tion, facilities for instantiating objects on the fly are a necessity. This can ei-

ther be done with explicit calls by the objects in the system, or be performed

implicitly the first time an object is referenced.

Remote Communication In order to actually communicate with a remote object,

facilities must provide some transport for passing data requests and results

across the network. Essentially, this boils down to some form of remote pro-

cedure call mechanism, although many object systems provide for a more

object-based approach such as the Common Object Resource Broker Archi-

tecture (CORBA) or Sun’s Remote Method Invocation (Remote Method In-

vocation (RMI)). Such an object system must usually provide means for au-

tomatically “boxing” and “unboxing” the parameters of the remote method

calls so that objects can be successfully copied from one network location to

another.

Higher-level systems may also provide means for:

Semantic Discovery Rather than doing simple name mapping, it may be possi-

ble to search for and locate objects using a more flexible semantic descrip-

tion of the object. Sun’s Jini[27], for example, accomplishes this using a set

of strongly typed attribute values; each of which provide a many-to-many

mapping between objects and a set of attribute values [28]. This allows a

single object in the system to have multiple names in different languages,

for example. Discovery operations within Jini are performed by providing a

template of attributes, and returning the object or objects which will satisfy

the template’s constraints.
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Method Selection The flip side of semantic discovery, which allows for richer

means of selecting objects, is a richer method selection mechanism, in which

semantic descriptions of the desired process allows for a higher-level means

of describing methods and choosing the most appropriate one.

These higher-order means of communicating with agents are useful, but are

not strictly necessary for the programmatic control of an agent system. However,

as the capabilities of an intelligent environment (IE) grows, being able to provide

this kind of semantically rich discovery and selection operations to the user is nec-

essary, so that the user is somewhat protected from having to recall the names

and operation of all the applications in the system. Whether these semantically

inspired tasks are built into the system, or layered on top of a lower-level agent

framework, their capabilities need to be provided to the user at some point.

3.2 Metaglue Design and Operation

The basis for the AIRE Project’s [3] agent implementation is Metaglue [8], a Java-

based agent system that provides for the easy creation of agent networks, dis-

tributed amongst many different platforms.1 Here I describe the Metaglue system

in some detail, and describe some of the enhancements made to the system since

the initial design by Phillips [34].

Metaglue makes extensive use of Java’s design and RMI components to pro-

vide the basic substrate for the agent systems. Name mapping is performed uti-

lizing the RMI registry, and the basic ontology grows out of the standard means

for identifying Java classes. Similarly, the communication transport utilizes the

RMI design. Metaglue does not have higher-level frameworks for semantic-based

discovery or method selection (but we explore how to add those in in Chapter 5).

Like all Java objects, each agent running under Metaglue runs on a Java vir-

tual machine (VM). In addition, any VM running Metaglue agents must first start

1Much of the basic information on Metaglue is found in Coen et al.[8], although the focus there
is describing Metaglue as a programming language and toolset rather than as an agent system.
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a singleton instance of a special platform agent, called the MetaglueAgent2. The

MetaglueAgent is responsible for communicating with the CatalogAgent, a sepa-

rate agent which, like the RMI registry, holds information about all agents in the

running system. The MetaglueAgent is also responsible for starting and stopping

other agents on the local VM on request.

3.2.1 Agent Identification

Every agent needs to be named with a unique identifier, so that it can be queried

and located by the agents running on the Java VM. These identifiers are stored in

the CatalogAgent, and retrieved on request.

The naming scheme used by agents in Metaglue consist of AgentID objects,

each of which contains three fields: a society, an interface name (which in Metaglue

is called the “occupation”) and an optional unique identifier (called the “designa-

tion”).

The society is a simple string, which Metaglue uses as a naming and scoping

mechanism for agent divisions. The term “society” is here taken from Minsky’s

Society of Mind theory [30], and is intended to collect agents together which are

operating for a common purpose. One way that this field can be used in the Agen-

tID is to define the entity for which the agent operates. In practice, this is usually

something like a username or set of initials for a user, or a room name and number

(such as office832) for an intelligent space.

The agent occupation is a name for the API that the agent implements. For

simplicity’s sake, this usually references the Java interface name that the agent

handles – for example, a projector might have an interface name like device.dis-

play.Projector.3

Finally, the designation is used to disambiguate individual agents that share a

2Early papers on Metaglue (including Coen et al. [8]) refer to this agent as a “Metaglue virtual
machine,” or “MVM” for short. Since the term “virtual machine” often implies a larger architecture
executing a defined instruction set, I prefer to use the term “platform” in this thesis.

3All of the core agents in Metaglue exist under the “edu.mit.aire” namespace. For purposes of
readibility, this thesis will often omit that common portion of the naming convention.
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society and an occupation, and thus could be confused. For example, a conference

room might have multiple projector displays available for use. Each one must

have a separate designation, either a name or perhaps a number, so that they can

be addressed separately.

AgentIDs are often referenced by strings, with the individual components sep-

arated with simple punctuation characters. One projector might be fully identified

with office832:device.display.Projector-north, where “office832” represents the so-

ciety, and “north” the designation.

3.2.2 Agent Communication

In order for one agent to communicate with another, it must first obtain a “handle”

that will mediate the communication with the destination agent. This is done by

contacting the Metaglue catalog and requesting the handle for the destination’s

AgentID.

Metaglue is based on Java RMI, so these mechanisms make extensive use of

the underlying RMI facilities; in particular, the Metaglue catalog is closely tied to

the RMI registry. In the Java RMI framework, a running object registers itself with

the registry under an arbitrary key. Other objects then consult the registry and

obtain a handle by presenting that key to the registry. The registry then returns

the handle (called, in RMI parlance, the “stub”), to the requestor. The stub is a

lightweight object representative which relays method calls to the stub across the

network to the actual running object, and return any results back to the local caller.

This is a minimal mechanism intended to facilitate the construction of a variety of

richer interfaces, while making remote object communication as straightforward

as calling methods locally.

Metaglue provides several capabilities on top of RMI; the two most impor-

tant of which are automatic starting of agents and guaranteed reliable communi-

cation. Both of these are provided through the Metaglue reliesOn primitive. When

reliesOn is invoked using an AgentID, the Metaglue system checks whether the
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specified agent already exists, and, if so, returns a handle to it. Otherwise, a new

object satisfying the API specified in the AgentID’s occupation is created, a handle

for it is stored into the Metaglue catalog, and the handle returned to the caller.

The second goal of guaranteed reliable communication is provided through

proxy objects (called error-handling avatars, or EHAs) which are created locally

during the reliesOn call. All communication to the remote agent is funneled through

the EHA proxy object. The purpose of the EHA is to easily handle communication

errors and failover conditions without having to force each agent to perform spe-

cial processing on its own to detect agents that are unavailable due to a crashed

computer or frozen process (originally specified in Warshawsky [43]). The EHA

proxies automatically retry communications in the event of network errors, and

even restart agents that become unavailable. All this functionality is invisible to

the agent programmer, and ensures that the agent will complete any request to the

destination.

The proxy also makes it easier to lazily start up agents – the reliesOn call re-

turns immediately, even if the remote agent is not present and needs to be started.

While the remote agent is initializing, the calling agent can continue processing,

and the EHA will only block and wait for the remote agent when it requires a re-

mote method call to complete. This is especially useful since Metaglue agents may

take some time to initialize; if an agent needs to use a separate agent for handling

a user interface, it behooves us to try to start them in parallel as much as possible.

In these cases, the agent’s initialization routine would first call reliesOn to start

up the user interface agent, and then continue with its own initialization. When

the time comes to call a method on the user interface agent and populate the UI

with specific data, the proxy automatically pauses the method call until the user

interface agent has completed its own initialization routine successfully.

Because the proxy provides a level of indirection between the local agent and

its requested communication partners, any requested agent can be replaced at run-

time with another that satisfies the same interface, simply by changing the desti-

nation that the proxy communicates with. This allows for dynamic replacement of
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agents in a running system, without forcing agents to re-send their reliesOn call.

This is used often by Metaglue’s resource management architecture to substitute

new agents for old ones without an expensive restart of all the agents in the net-

work, and is a key component of the Hyperglue system.

3.2.3 Notification Systems

Although the one-to-one communication provided by the reliesOn primitive is

useful, there are many times where an agent needs to employ multicast messag-

ing, to deliver a single message to a multitude of destinations. For this, Metaglue

provides a publish-subscribe interface called the NotifierAgent. Agents send noti-

fication updates with an identifier to the Notifier, which acts as a clearinghouse for

the updates and passes them on to all agents who have registered for updates con-

cerning that identifier. Similar mechanisms can be found in other agent systems,

such as OAA or the EventHeap architecture of iROS.

In Metaglue, the Notifier works fairly simply. All agents that wish to broad-

cast information do so by providing the data along with a string-based identifier

that describes the type of information being sent (usually the application or device

name, followed by an information category, such as “map.select”). By convention,

different components of the identifier are separated by period characters. 4

The agents that wish to receive notifications send a request to the Notifier, pro-

viding an identifier of the kind of information the agent wishes to receive, and the

name of a callback method that should be used by the Notifier. The identifier in

the request may also contain an asterisk wildcard (“map.*”) to indicate that they

want any information from a given application. If an agent wants to receive all

notifications (a rare occurrence except for debugging applications), it does so by

simply requesting just the wildcard ”*” identifier.

When an agent publishes its message information to the Notifier, the identifier

4In Metaglue parlance, the information and identifier are collectively referred to as a “secret.”
Because this name is rather inappropriate for an item that gets passed to anyone who wishes to
hear it, I will use the term “notification” to describe the message information.
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is checked and the notification is then forwarded on to all agents that had previ-

ously made matching requests.

Many Metaglue agents use the Notifier extensively, for a variety of purposes:

• To monitor changes to the world state. This is a common usage. For example, a

map-display agent in the room publishes notifications whenever the current

display changes. This is used by an associated speech-processing agent to

determine what locations are currently visible on the map display, and uses

this information to prepare for spoken queries involving the visible locations.

Device controllers for lights publish notifications whenever the lights turn on

or off, so that other agents can monitor an environment and make assump-

tions about the current lighting levels. The Metaglue catalog also publishes

notifications describing the current state of the agents for debugging appli-

cations.

• To manage server-client architectures. Some agents operate on a client-server

architecture, where many different agents communicate with a central agent

to coordinate and share information. One example is the “intelliCD” mu-

sic application, which allows several clients to monitor and control the am-

bient music playing in a shared environment. Although each client sends

its requests directly to the server – requesting a new song, or expressing a

like/dislike reaction to the current music – the music server in turn uses the

Notifier to broadcast the collected reaction information to the clients, as well

as sending updates about the song that is currently playing.

• To create flexible user interfaces. In order to create mobile interfaces that are ca-

pable of being shifted to new locations on the fly or even replicated on many

different displays, Metaglue agents are often designed to separate the con-

trol logic from the graphical user interface. When this is done, the interface is

usually embedded into a Java object and sent to a GuiManagerAgent which

uses notifications to receive information from the control logic and update

the user interface.
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3.2.4 GuiManagers

The GuiManagerAgent design is worthy of more explanation since, although it

falls short of enforcing a true Model-View-Controller design, it does a good job of

separating the main program logic from the interface and easing the creation of

portable, flexible user interfaces in an agent framework.

An agent that wishes to publish a user interface will package the interface into

an object called a GuiMaker. This is simply a Java object that satisfies some simple

conventions – it can manage its state so that it can be transferred over a network

connection, and it has the ability to take a section of screen real estate and render

the interface inside of it (called a Container in Java parlance). In addition, it shares

some aspects of agents without being an agent itself – it can listen for notifications

and send them out, and it can use reliesOn to procure a handle to an agent in the

system. The GuiMaker does this by cooperating with a management agent (the

aforementioned GuiManagerAgent) to deal with notifications and make requests

from other running agents.

Often, the interface will not maintain any state variables of its own, relying in-

stead on querying the agents directly for information. Thus, the interface objects

are fairly simple code, directly translating an action on the interface into a method

call on an agent running in the system, and using the agent to manage any impor-

tant information.

To make this work, the agent framework starts instances of the GuiManager-

Agent on all platforms that are tied to displays. Thus, when an agent wishes to

show an interface in a given location, it contacts the manager for that display, and

passes the GuiMaker for the interface to it. The GuiManagerAgent then takes re-

sponsibility for displaying the interface and mediating communication between

the agent framework and the user interface; it will do this by passing notifica-

tions from the agents to the user interface, and allowing the user interface to run

reliesOn and make requests of agents.

Imagine, for instance, a simple CD player control (see Figure 3-1). In this case,
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Figure 3-1: A CD player using a GuiManager for display. The CD agent passes
an interface object to the manager’s display, which can then be used to pass event
requests back to the originating agent.

there is an agent that can directly control the CD player, and a GuiMaker object

consisting simply of a text display that can report on the currently playing song,

and a handful of buttons that allow the user to pause the song, skip to another one,

or control the volume. As the agent starts, it delivers the GuiMaker to a manager

running on an appropriate display, and the manager will launch the UI code in

the GuiMaker. The GuiMaker object will then query the agent to determine the

currently playing song, and perform requests when the buttons are pressed. In

turn, the CD player agent sends notifications announcing updates to the currently

played song, so that the interface display is kept up-to-date.

This separation – putting state information into the agent and user presenta-

tion into the interface – provides several possible scenarios for dealing with user

interfaces to agents:

• Portable interfaces, which can be moved seamlessly from machine to ma-

chine. Because most interfaces have no internal state, this translates to the

action of closing a window on one machine and opening it on another.

• Replicated displays, which appear in many different places.
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• Multiple presentation interfaces which can display data from the same agent

or agents in different ways, based on either the capabilities of the output

device or the user’s desires.

• Shared displays, in which the GuiManagerAgent can tile or overlap Gui-

Maker objects from several agents into one large window.

Because of this separation, developing portable applications that work well un-

der Hyperglue is far easier. This will be explored further in the next chapter.

3.2.5 Security Hooks

The proxy system described above is also used as the basis for a security system

with method-level granularity – that is, security systems can create a version of the

proxy which refuses to send a message under certain conditions. Any agent can

specify its own version of the proxy to be used for communicating, and its proxy

can refuse a call to any method for any reason. More details of this are found in

design work by Kottahachchi [19].
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Chapter 4

Extending Agent Systems Around the

Society Model

The first pillar of this thesis consists of modeling agent communication structures

around the social and physical interactions that they represent. In this chapter, we

describe the design of the agent society model, and show how we use it to structure

communication in keeping with that model.

As a brief reminder, by the term agent we mean a software object that exists in

the context of a distributed system, capable of remote invocation by other agents,

and acting on behalf of an entity in the real world. Agents can operate at a very

low level in the system – for example, as a simple device controller – or be a high-

level object that embodies a strategy or plan for marshalling lower-level agents

to perform a task. What all agents share is that they operate within a common

framework, which provides mechanisms for agent discovery and communication

(either directly from agent to agent or indirectly through a publish-subscribe or

blackboard architecture).

From some perspectives, this often means that a collection of agents have greater

differences (their level of abstraction, the knowledge that they maintain or have ac-

cess to) than similarities. When this is the case, we try to use qualifying terms (“the

planning agent”) to make the distinction; otherwise, when our concern is only with

overall protocols or mechanisms that all agents adhere to, we use the term agent
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indiscriminately.

4.1 Communication the human way – Scenario I in real

life

In scenarios like those described, there might be a large set of agents all operat-

ing at once. Some of these agents may actually be simple, low-level device han-

dlers, such as a controller for a display or an e-mail processor. Others are more

high-level abstractions, for example, Alan’s agent that gathers the list of recipients

and sends out notifications. A system running just the notification scenario in Sec-

tion 2.3.1 can easily encompass a hundred agents, all working in concert to provide

the needed functionality. Add in more tasks for the IE, and expand the number of

users that the system needs to be capable of handling, and the number of agents

skyrockets.

When dealing with large distributed agent systems, there are often scalability

concerns. Performing agent discovery, for example, requires access to some sort of

directory lookup mechanism, which needs to be able to find the appropriate agents

without significant slowdown. In addition, failover conditions for any agent in the

network need to be handled gracefully.

There have been several approaches to handling these problems (for example,

the Intentional Naming System [2]), but these often have scalability issues lurk-

ing behind the scenes. For example, the initial revisions of INS assumed that all

the individual name resolvers would know all services that they would ever need

to route to, effectively causing all the resolvers to maintain a global knowledge

base that was continually propagated throughout the network. Where a small

organization might be able to maintain this information easily, as the number of

services grows, propagating and maintaining this information became an expen-

sive proposition.[24]. In addition, the design of the resolver’s data structures be-

come inefficient when the number of service entries climbs into the realm of tens
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Figure 4-1: Sending messages from Alan to Beth – human version

of thousands, so INS becomes inadequate for maintaining service information for

very large organizations.

In addition, there are security issues to be dealt with – if any agent can con-

tact any other agent in the system, then an appropriate negotiation needs to take

place to ensure that an agent operating on behalf of one person isn’t being used

inappropriately to retrieve information to which it shouldn’t have access.

When examining the portion of the scenario that deals solely with Alan and

Beth, we can divide the agents into three broad categories: those working for

Alan, those working for Beth, and those working on behalf of the conference room.

This provides us with a roadmap to simplifying the communication and scalabil-

ity problems, by organizing communication along the same pathways that humans

would naturally use.

Imagine that the simple message-sending scenario with Alan and Beth were

being handled directly by the parties concerned, rather than through agents:

1. First, Alan would ascertain Beth’s current location.

2. He contacts her through some communication medium.

3. He lets her know that he wants to send her some information, and asks the
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best way to get information to her.1

4. She responds with her preference (e.g., “send it over IM”), and Alan either

follows her wishes or negotiates a better method for sending the data.

5. If the channel is something that might require a larger display – for example,

if Alan was sending a URL to a web page that Beth wanted to display on

a wall of the conference room – Beth would have to work directly with the

devices of the room, directly making decisions about which devices are free

or in use by others in order to display the information appropriately.

To restate the above in broad strokes, Alan contacts Beth, negotiates for a mes-

sage-sending interface, and uses it to send information. Beth contacts the devices

in her current location to find a display interface, and uses it.

4.2 Societies of Agents – People and Places

Looking at the human-centric version of the communication model, it’s easy to

see the difference between it and a fully ad hoc approach where any agent in the

system has global knowledge of other running agents. In essence, all interaction

is funneled into communication between people, or interactions between a person

and the devices at the person’s location.

This yields a method for mitigating many of the scalability and security con-

cerns in the agent communications. Essentially, we cluster all agents into a group

based on the real-world person or place for which they act (Alan, Beth, the con-

ference room, etc.). Following Marvin Minsky’s terminology in “The Society of

Mind”[30], we will hereafter refer to such a group of agents as a society. All of the

agents are categorized as belonging to Alan’s society, Beth’s society, or the soci-

ety for the conference room. In addition, we also designate one specific agent to

1If the information is just the notification that we see in the scenario, of course, Alan would
probably short-circuit the process and just tell Beth directly what he wished to say for the sake of
expediency. When we translate this example back to the agent-based world, however, these desires
for expediency are better handled through agent negotiation.
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Figure 4-2: Sending messages from Alan to Beth – agent-space analogue

handle the communication flow, thus abstracting all a society’s agents behind an

“ambassador” agent, which in turn mediates communication.

At this point, the agent-space analogue to the human-centric communication

model becomes a straightforward translation of the above:

1. Agents working for Alan use the local catalog to contact Alan’s ambassador,

which in turn uses a directory service to locate the ambassador for Beth.

2. Alan’s ambassador opens a communication channel with Beth’s ambassador.

3. The two ambassadors engage in a handshaking protocol, and Alan’s ambas-

sador requests a service for sending information.

4. Beth’s ambassador returns some candidates for selection, or alternately might

open a negotiation with Alan’s ambassador to find the best possible candi-
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date.

5. If the selected service requires communication with the local environment,

Beth’s agents perform a similar operation with the ambassador for the local

environment’s agents, requesting a service for graphical or auditory repre-

sentation of the information.

What benefits does this approach yield?

• There is no need for a globally-published listing of all agents; instead, the

problem is reduced to the need to find the societal ambassadors – a much

smaller set. This reduces scalability concerns in any global directory service.

In addition, it mitigates at least one security concern by preventing rogue

agents from “surfing” the global listing to find vulnerable services, since the

full listing of agents in any society is not provided to the world at large.

• A potential security checkpoint is now available through the ambassador.

Because all external communication is mediated through the ambassador, the

ambassador functions also as border control for the agents, denying access to

agents unless they are coming from an approved source.

• Coding of individual agents is simplified. Because the ambassadors are tasked

with many of the more complex duties of the distributed communication, the

individual agents are relieved of many of these responsibilities, and instead

can focus on their own individual operation. In addition, because all commu-

nication requests come from a local source (the ambassador), the individual

agents treat all requests as if they were locally generated.

• It makes it easier to unite heterogeneous agent systems. Because the details

of any agent network are now abstracted behind the ambassador agents and

public APIs, allowing one agent system to talk to another simply requires

that the ambassadors be able to communicate and pass API information back

and forth.
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There is a cost to this structure, of course. A simple global list of every agent in

the world is a much simpler means of finding information, and the ambassadorial

structure will incur costs in processing time, as requests get routed through the

ambassadors. I submit, however, that the benefits of this approach outweigh the

minor impediments to performance.

4.2.1 Ambassadorial Functions

With this design, there are several functions that need to be handled by the ambas-

sador agents in order to provide the benefits mentioned.

Real-World Entity Representation

Because all agents are operating on behalf of some real-world entity, and the am-

bassador is the central representative of each agent society, the ambassador also

acts as the representation in agent-space for the real-world entity. As such, it can

deliver answers about the real world, such as location information, to agent-space

objects.

Border Control

Although the individual agents in a society, or the society itself, can create their

own means of dealing with access control, the ambassador acts as a first line of

defense against malicious requests, simply by not allowing requests by agents that

do not identify themselves as being trusted. This can be as simplistic as having the

ambassador maintain a list of agent societies that are trustworthy, or can run to a

more intricate access control mechanism utilizing role-based access controls.

Negotiation of Agent Services

Since the ambassador is the main conduit between external societies and the local

society, it is well suited to negotiate with the external society regarding the service

qualities. Whereas local services are usually chosen based on the preferences of
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the entity the agents are working for, finding a service that balances the needs of

both the local and remote agents is more difficult. The ambassador is used to offer

and negotiate for the best results.

Details of the local service mapping case and service qualities are described in

Chapter 5.

4.3 Hyperglue: Applying Societies to an Existing Multi-

Agent Framework

Let us now examine how we take the society-model design for agent communi-

cation and apply it to an existing multi-agent system. The first version of Hyper-

glue is implemented atop the MIT Metaglue multi-agent framework. Chapter 3

described the Metaglue system in more detail; it may be worth referring to it for

more information.

4.4 Building Hyperglue

Although the Metaglue system provides a foundation for agent discovery, com-

munication, and resource management, its shared catalog makes it less than ideal

for our scenarios in Section 2.3. Specifically, it doesn’t provide adequate separa-

tion between different users and spaces, and makes it far too straightforward for

a malicious agent to take control of a space without regard to the space’s policies

and procedures.

To alleviate these, we abstract the discovery, knowledge representation, and

resource management tasks to a higher level, treating each society of agents as a

single entity, and looking at the interactions between societies rather than agents.

We refer to this higher-level abstraction as Hyperglue, the first version of which is

now deployed in the AIRE Project’s laboratory.
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Figure 4-3: The elements of a Hyperglue society

4.4.1 Overview

Hyperglue provides a communication interface between agents, situated at the

level of “real-world” entities such as people, places, and organizations. In this

section, we illustrate how an agent that is a member of one agent community

uses resource management systems and Hyperglue’s entity discovery capability

to communicate with an agent in a different agent community.

We specify each agent community by extending the Metaglue notion of a so-

ciety. Whereas in Metaglue the notion of a society is little more than a grouping

construct, Hyperglue introduces more required structure into each society (see Fig-

ure 4-3). This includes a catalog of the local agents in the society, service mapping

and resource management subsystems, ambassador agents for communication ex-

ternal to the society, and knowledge engines that can drive local decision making.

In short, each society acts as its own miniature agent system, only dealing with

external societies when necessary.

Consider two agent societies that need to communicate with each other. These

might be operating on behalf of two users trying to share information, or a person

trying to gain access to the devices in a shared environment, or any of a number of
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other scenarios. When an agent in one society needs to invoke the services of an

agent in another society, it first contacts a local resource manager. Note that even

though the request is for an agent in a different society, the local agent still views

the remote agent as merely another necessary resource, and delegates the task of

finding the appropriate component to the local resource manager.

If the resource manager determines that the request involves the remote society,

it then forwards the request to the Ambassador for the local society. In the Hyper-

glue implementation, this is handled by delegating the request to a class with the

expertise to analyze resource requests and determine whether a request should be

considered local or should be passed to a remote society for action. This decision is

fairly straightforward – if the request is for a specific AgentID, and the society for

that AgentID is remote, it is forwarded into Hyperglue. Otherwise, the decision

is made based on the kind of agent being requested; if the request is for one of a

set of agents that tend to live in spatial societies, the remote society is queried and

used. Some examples of such “spatial agents” include:

• Device agents (which tend to be closely associated with hardware in an IE)

• The GuiManagerAgent, which is closely coupled with output devices

• Web browser agents, which tend to be shared applications, usually coupled

closely to the operating system

The Ambassador agent acts as a point of contact for its society to other agent so-

cieties, and is registered upon startup with a global directory system called the Hy-

perglue Entity Directory (HED). Like real-world ambassadors, the Ambassador’s

function is to represent the agents in its society to other societies of agents. This

includes sending out requests for handles of agents in other societies as well as

receiving requests for handles to agents in its society.

When the local Ambassador receives the request, it consults the HED for the

location of the Ambassador agent for the remote society. It then contacts the remote

Ambassador and passes on the request. The remote Ambassador then passes the
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request on to its own resource manager, which makes the determination about

how to fulfill the requirements (if at all), and passes back a handle for any found

resources to the local side through the Ambassadors’ connection, and finally back

to the original requester.

One might wonder why the HED is not likely to become a centralized choke-

point in the system. Note, however, that the network traffic that the Ambassador

must employ to communicate with other societies easily dominates the small traf-

fic that is sent to the HED in performing the initial name lookup. As such, the HED

is not likely to cause delays until the number of societies in the network becomes

large. When that occurs, other approaches to societal and HED organization can be

explored (see Section 4.6 for a description of one such approach.)

One of the nice features of this approach is that agents treat inter-society re-

quests the same way that they treat requests within the society, easing agent pro-

gramming greatly. The entire process of requesting remote agents is hidden behind

the call to the local resource manager, so Hyperglue’s inner workings are behind

the “abstraction barrier” presented by the resource management framework. In

addition, the inner workings of agent societies are encapsulated into the higher-

level societies, easing the burdens put on the HED during the discovery phase.

In Metaglue, all resources are represented by agents2. For most physical re-

sources in an IE, the agent that gets returned as part of a resource request is a

device controller. This approach in Metaglue (and reflected in the base Hyperglue

design) – making requests for APIs and getting agents in return – is a bit weak

semantically, since it doesn’t allow for the possibility of retrieving services on any-

thing more than a strictly operational basis. That is to say, if it’s not expressible

as a service or API description, it can’t be retrieved. Hyperglue addresses this

through semantically richer descriptions and context-dependent requests, which

2To be perfectly accurate, there do exist means to return resources that are not agents in Metaglue
– in theory, this would allow the reservation of resources that represent something other than an
API-enabled service. One example might be an object representing and reserving the connection
between a computer and a display made through a video multiplexer. However, most resource
managers in Metaglue neither recognize nor return such non-agent resources, so I ignore them in
this document.
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are described further in Chapter 5.

4.4.2 HED Lookup

The HED mechanism itself can be implemented through a number of different

mechanisms, since its functionality is little more than a “yellow pages” reference,

mapping a society name to the location of an Ambassador agent. Several such sys-

tems exist, including the Intentional Naming System[2], the IETF Service Location

Protocol [42], or even simple additions to the venerable DNS[13].

There are currently two different implementations of the HED lookup mecha-

nism. The simplest, used for testbed platforms of Hyperglue, is to use Java’s RMI

to store the locations of Ambassadors in a known registry, keyed by the society

name. Although simple to use, this natually generates scalability and robustness

issues, since the RMI registry needs to be in a known location and constantly in

operation in order to function properly, and is thus likely to be insufficient for a

long-running IE implementation.

Another version of the HED has been implemented over the Intentional Nam-

ing System. In this version, an INS name-specifier is created specifying the society

name and contact information for the society’s Ambassador. When a society starts

up, it is registered into a nearby Intentional Name Resolver (INR), and that infor-

mation is broadcast to other INRs in the network as needed. Then, when an HED

request for a society is made, the nearest INR is contacted to locate the Ambas-

sadors that match the given society name.

As mentioned before, and as pointed out in Lilley [24], there are scalability is-

sues with INS when the number of entries grows too large. Those same scalability

issues effect the INS-based version of the HED as well, but by limiting the number

of records stored in INS and only using it for storing location information (rather

than for every service in the world), we avoid the issues that impact INS’ ability to

handle large-scale environments.
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4.5 Hyperglue and the Publish-Subscribe Model

Publish-subscribe (“pub-sub”) mechanisms like the NotifierAgent, in which a sin-

gle clearinghouse receives subscription requests and also forwards publication re-

quests to its subscribers, present a minor problem in the Hyperglue model. As

mentioned previously, Metaglue agents make extensive use of the NotifierAgent,

to allow for easy creation of server-client architecture designs, and also to create

mobile user interface constructs, where the details of the user interface presenta-

tion is independent of the workings of the agent applications. This is also used for

creating event-driven agents, which use the publications to determine changes in

the world and update their internal state accordingly.

Separating the societies presents some issues with systems such as the Notifier,

however. In short, we need some of these notifications to cross the societal barrier.

As an example, consider Metaglue’s use of the Notifier in user interfaces using the

GuiManagerAgent, say, for a simple chat application. The Metaglue design sepa-

rates the control logic (the component that receives chat messages and processes

them) from the interface and display components, and uses the Notifier to pass

messages from the control logic to the interface. Although the controller certainly

lives in the user’s society (since the user should maintain control over his user-

name and password for the chat system), the display that he’s using to show the

information may not – in a shared environment, the display is owned by the space,

not the user. Therefore, either we allow the interface to be exported to the space’s

GuiManagerAgent, or we disallow this kind of usage. To maintain some level of

usability, the publish-subscribe system must allow some notifications to cross the

societal barrier from the user to the space.

With a design like the society model, one can envision the publish-subscribe

system being handled in one of two ways. Either a global society is used to serve

as a clearinghouse for all subscription requests in the system (totally ignoring the

boundaries of societies), or each individual society can use its own clearinghouse

to handle local message traffic. Hyperglue’s design chooses the second option, in
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an attempt to limit message congestion.

With a global design, the central society would easily become overloaded with

messages that most agents in the world don’t care about. For example, an en-

vironment running a music application might broadcast information about the

currently-playing song to the users within the environment, but users outside of

that environment have no interest in this information. Sending all messages to

a central dispatcher, when the vast majority of subscribers are uninterested in the

content, could easily swamp the dispatcher. The dispatcher would need to be care-

fully designed, both to ensure that messages are quickly sorted and sent, and that

messages aren’t being sent to uninterested parties.

In contrast, the Hyperglue approach is for each society to provide its own pub-

sub mechanism internally. Although this does make the number of messages man-

ageable, and lowers the need to make each dispatcher a high-performance one, we

are left with the problem of transferring messages outside of the current society.

Turning again to the music application design, when the environment wishes to

broadcast a change, it cannot limit the messages solely to the environment’s soci-

ety; it needs to also broadcast the messages to the users’ societies so that they can

handle the information.

To accomplish this, we add another level of indirection to the pub-sub de-

sign. In Hyperglue, requests for a Notifier are instead replaced with requests to

a HyperNotifierAgent, which (in addition to performing the usual duties of the

Notifier) forwards subscription requests to the society for the current location,

and also forwards local notifications to requestors from other societies. As with

the other aspects of Hyperglue’s design, this distributed layout allows societies to

communicate with other societies without forcing agent programmers to differen-

tiate between intrasocietal and extrasocietal communication.

In order to differentiate between notifications that cross the societal barrier and

those that shouldn’t, and thus avoid infinite loops as messages are sent back and

forth between socities ad infinitum, notifications (called “secrets” in Metaglue par-

lance) are first wrapped up in special HyperNotifierSecret objects, and then for-
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Figure 4-4: Publishing using the HyperNotifier

warded across to the remote society (Figure 4-4). When the HyperNotifierAgent

receives a HyperNotifierSecret object, it only allows it to work locally, and will not

re-forward it to another society.

4.5.1 Improvements to Metaglue: RMI Classloading

Some improvements had to be made to the base Metaglue system in order to facil-

itate the implementation of Hyperglue. One such improvement was the introduc-

tion of RMI-based classloading.

Java’s RMI design requires that both sides of the communication have access

to the class structure for the remote object. This is due to the fact that the RMI stub

implements the same interface that the remote object does, and therefore all of the

remote object’s API information, including method names, parameters, and return

types, must be known to both the local stub and the remote object as well. Because

Metaglue is based on Java RMI, this means that under normal circumstances, all

agent-to-agent communication would require that the codebase be shared, so that

all interface information is equally available to both sides of the connection.

However, this is problematic for any long-running agent system, where a user

may wish to introduce a new agent into an existing environment without having to

restart the IE. To solve this problem, Metaglue extends Java’s classloading facility,

and automatically queries all Metaglue platforms when it needs information for

an unknown class. It then loads the class definitions – for both new agents and

subsidiary objects – over the RMI connection at runtime. This allows a user to
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write a new agent and introduce it into an existing IE without restarting the entire

environment.

4.6 Extensions to the Society Model: Group Societies

and Ad Hoc Communication

In section 4.2, we discussed a design for agent societies in which each society repre-

sented either a person or a place (usually an IE). Unfortunately, such a puritanical

division leaves gaps in the agent model.

For example, consider an application where a user wishes to broadcast a mes-

sage to the members of a workgroup. If the user is a member of the group, then he

can probably send the message directly. However, there are many cases where the

user would either not know all the members of the group (because he is an out-

sider), or where the workgroup may wish to place limits or filters onto messages

being sent to the membership.

One such example can be found by looking to our third scenario, in which Ellie

is sending a message advertising free donuts to the graduate students in the lab. In

this scenario, there exist a number of research groups which are geographically as-

sociated with the lounge, each of which contains a number of graduate students3.

These groups are not necessarily associated with any given room, so we cannot

simply deliver messages to the grad students associated with a space. Given these

conditions, it makes a great deal of sense to note which research groups are asso-

ciated with the lounge, and contact those groups to locate their students who are

available for the message.

In these cases, it is useful to have the same kind of divisions that the society

model sets up between users and places, but instead acting as a representative

for the workgroup. Because of this, we introduce the notion of a “group society,”

which acts as a collection point for a number of other societies, and whose ambas-

3The notion of “geographically associated” is one that would be provided by a semantic data
store that can describe such relationships. This is described further in Chapter 6.
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sador can act as the point of contact for the entire group, forwarding messages and

requests to the other group members or to designated contact points as appropri-

ate.

In conception, this is similar to how modern mailing list software works, acting

as a collection point for messages and dispatching them to the members of the list,

or to other sublists as required.

The group society can also be used to create ad hoc collections. These are useful

when two societies may need to collaborate on a task, but don’t otherwise have a

common, pre-existing group in which they can claim membership. Such an ad

hoc society would likely only exist for the duration of the task at hand, but can

allow the participants to disengage or re-engage freely until the task is complete.

One example is our “chat” application, in which two or more users may wish to

come together for a conversation – although one user might wish to create such

a chatroom, the creating user doesn’t “own” the conversation in any reasonable

sense. As such, the central application for the chat room would best exist in a

temporary society, with the proviso that when a certain agent stops running, the

society can be dismantled and any allocated resources released.

Because they have knowledge of their child societies as well as their location

in a parent society, group societies can also serve as nodes in a hierarchical layout

for the HED service. In short, ambassadors trying to find a given society would

first examine an HED node attached to the nearest encompassing group, which

could then return either a local society or direct the request elsewhere to return the

information to the requesting ambassador.4

4.7 Revisiting the Scenarios

Let us briefly turn back to the three scenarios and see how Hyperglue and the

societal model addresses the necessary infrastructure requirements, and explore

4Such a hierarchical, group society-based version of the HED has not yet been implemented.
Such a design, however, could prove to be a fairly flexible, practical addition to Hyperglue, and so
is presented here as a signpost for future work.
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where the knowledge needed for each task lives.

4.7.1 Messaging

Here the use of the society model is fairly clear – each person (Alan, Beth, Charlie,

Diane) has a separate society of agents. The agent handling Alan’s message de-

livery attempts to locate the message delivery services for each recipient. Alan’s

resource manager will determine that these agents live in a separate society, so it

will forward the requests for those agents to Alan’s Ambassador.

Alan’s Ambassador uses the HED to locate the Ambassadors for Beth, Charlie

and Diane, and then forwards to them the request for a message delivery service.

Because Beth, Charlie and Diane are in situations where notification through per-

sonal services (e-mail, SMS, personal laptop display) is appropriate, agents within

their societies will be able to satisfy the service, and stubs for communicating with

them will be returned to Alan’s original requestor.

If Beth were in a situation where she would make use of her environment’s

facilities to deliver the message (over the room’s speakers, for example), the mes-

sage delivery service she used would in turn contact the room’s Ambassador and

open a new request for a message delivery service from the room’s society. Once

it receives it, it passes on the message text to the room’s service, so that the text is

delivered appropriately.

To break this last case down step-by-step, assuming that Beth’s preferences are

to display the information on a local display in Beth’s current location.

1. One of Alan’s agents receives a request to deliver a text message to the Beth

society. It builds a service request based on the society requested and the

message delivery API, and requests it from Alan’s resource manager.

2. Alan’s resource manager knows that “Beth” is a reference to a different soci-

ety, so it forwards the request for an agent to Alan’s Ambassador.

3. Alan’s Ambassador uses the HED to locate the Ambassador for Beth, and
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forwards the request for a message delivery service on to her.

4. Beth’s Ambassador uses the local service mapping engine to request the ser-

vice.

5. Beth’s service mapping system has a number of choices for message delivery,

based on her preferences and current contextual situation. It gathers this

information by consulting a local semantic storage that contains information

about Beth (see Chapter 6). After it gathers context, the service mapping

system can choose the best agent to satisfy the request (see Chapter 5).

6. Beth’s service mapping system returns a handle to the agent to Beth’s ambas-

sador.

7. Beth’s ambassador passes on the handle to Alan’s ambassador

8. Alan’s ambassador passes the handle to the resource manager, which hands

it off to the original agent making the request.

9. Alan’s agent uses the message delivery API to send the text to Beth’s agent.

10. If Beth’s chosen delivery agent doesn’t need to know about devices in her

current location, then it can simply act to deliver the message (say, through

email). However, in this case, it wishes to open a display to view the infor-

mation. Therefore, it requests a textual display from Beth’s service manager.

11. Beth’s service manager recognizes that it does not have a textual display in

its society, and decides to try a local display instead. It thus consults Beth’s

location information to find out where she is, and redirects the request for a

textual display to Beth’s Ambassador.

12. Beth’s Ambassador passes the request on to the room’s Ambassador, which

will act very much the same way as above, using the preferences defined for

the room to determine an appropriate display to use, and returning a display

service to Beth’s delivery agent through the ambassadors.
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13. Beth’s delivery agent uses the display service to show the information.

Note how the information is compartmentalized: information about Beth’s

preferences and location is only consulted by Beth’s agents, and thus only needs

to be stored local to Beth. The only piece of information about Beth that Alan’s

agents need is the information needed to look up Beth’s society, but nothing per-

sonal about Beth herself. Similarly, information about the room’s preferences can

be kept private to the room.

4.7.2 Application Mobility

Alan wishes to move the practice talk from his office to a different conference room,

which might make use of different services. When he makes that decision, his

practice-talk application has already retrieved services from his office’s society, so

that he has access to agents that are displaying his slides and the timer.

These agents make use of the GuiManagerAgent, so that they decouple the ac-

tual display from the control logic that decides which slide to show and when to

advance them. As such, Alan’s society is running the application agent for the

practice talk, as well as the control agents for the slides and for the timer. His

office’s society is running the GuiManagerAgent which is displaying the user in-

terfaces. As mentioned in Section 4.5, this system uses the publish-subscribe archi-

tecture of the HyperNotifierAgent to send GUI control messages between Alan’s

agents in his society and the GuiManagerAgent in his office’s society.

When Alan decides to move the talk into the conference room, his agents only

need to contact the conference room’s society for the appropriate GuiManager-

Agent services that can handle a large screen layout for the slides and a smaller

screen for the timer. Once it receives these services, the agents in Alan’s office are

asked to stop displaying the user interfaces and the agents in the conference room

given the interface objects for display. No change needs to be made to the running

interface agents; they will still be using the HyperNotifierAgent to send messages

to the UI, and once Alan is in a new environment the notifications are redirected
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to the new society.

When Alan moves, his practice talk application will also check to see if the new

location has recording services available. Since the conference room has perma-

nently-mounted cameras, it contacts the conference room’s society and is able to

obtain services that can capture a record of the environment.

4.7.3 Free Donuts

As noted in the previous section, because Ellie does not specifically know which

grad students need to be contacted, her message delivery application here needs

to make use of group societies for the individual workgroups associated with the

lounge. Her message delivery application would contact the group societies for

message services, indicating that the message is low-priority and only for those

people who can receive the message soon. The individual group’s message ser-

vices then determine which of their members satisfy such requirements, and send

the message on to the appropriate people, using the techniques described by Alan’s

message delivery application.

The group societies also do a good job of compartmentalizing the information

about the group. Ellie’s agent can merely send a request specifying some message

parameters to the group society, and does not need to maintain any knowledge

about the individual members of the group.

Still undefined in all of these scenarios is precisely how we select the proper ser-

vice given a request, and how we query the knowledgebase to determine a room’s

status or a user’s location. These aspects are defined further in subsequent chap-

ters.
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Chapter 5

Service Mapping

The primary goal of the Hyperglue design is to provide infrastructure to support

a simple principle – that decisions should be made by those affected by the out-

come of the decisions, and that no element of the system should be able to directly

control resources that belong to another.

We have seen in the previous chapters how Hyperglue goes beyond most exist-

ing pervasive computing environments in creating first-class representations (i.e.

societies) of individuals and spaces. It establishes a protocol in which informa-

tion is encapsulated within these societies, making it necessary for agents in one

society to interact with agents in another society indirectly. Such interactions are

mediated by the Ambassador agent of each society, preventing agents representing

one entity in the real world from appropriating resources that belong to another.

In addition to this basic principle, Hyperglue also aspires to provide a high

level of adaptability to variations in the environment. Because Hyperglue societies

are intended to be long-lived entities, they must be capable of responding adap-

tively to new situations in the environment – for example, to the loss of a resource

or to the acquisition of a new resource. In addition, because the interactions that

Hyperglue is intended to support mirror those of normal human society, Hyper-

glue components must be able to adapt to different user preferences.

In this chapter, I will describe how the Hyperglue framework achieves these

goals by the use of:
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• A decision theoretic approach to decision making.

• A focus on high-level goals rather than on resources and procedures.

• The use of a library of alternative plans for each known goal type

• A plan monitoring system that traces the execution of plans, detects and diag-

noses breakdowns and recovers as appropriate1.

5.1 Overview

Before jumping into the details of the mechanisms that I have designed for Hyper-

glue, it would be useful to see the decision-making architecture in broad overview2.

In the rest of this section I will describe each of the major components of this archi-

tecture including the rationale for each choice. In the following sections, I will then

describe the specific mechanisms that are implemented in the current Hyperglue

system. After that I will briefly describe additional components of the Hyperglue

decision-making architecture that are under development (often as joint work with

other members of the group) but not yet incorporated into the operational proto-

type.

5.1.1 Services

In contrast to most current pervasive computing environments (with the notable

exception of O2S[32]), we place our emphasis on abstract requests for service,

rather than on the discovery of specific resources. The rationale for this is to allow

the Hyperglue system to adapt to changing conditions while providing the user

the best possible service available. Consider even a simple user goal such as pro-

viding a reasonable level of lighting. Rather than requesting control of a specific

lamp, which might be broken, a Hyperglue user (or an agent within the Hyperglue

1This element of Hyperglue was designed and implemented by Gary Look.
2Much of the design in this chapter is joint work with Howard Shrobe.
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environment) makes a request for an “illumination service”. This allows the sys-

tem to find an alternative method for illuminating the space; for example, it might

open the drapes or use a different lamp.

5.1.2 Plan Library

Requests are intended to be abstract enough to allow more than one way of pro-

viding the service. Hyperglue societies provide a library of methods capable of

providing each service that a user may require. Accompanying each plan is a rich

set of meta-data, encompassing:

• what resources the plan will require

• what constraints apply across the ensemble of resources; and

• how the quality of service provided will depend on those resources.

A complex plan is also accompanied by its decomposition into sub-tasks and the

flow of data between these sub-tasks. Each sub-tasks is either a primitive task,

with directly executable code, or is itself a service request for which a sub-plan

must be fetched.

5.1.3 Service Quality Parameters

Because services are intended to be rather abstract, there is a range of “quality

of service” that will result from different methods of rendering the service. For

example, opening the drapes will provide natural lighting, while using an incan-

descent bulb will result in artificial light. Opening the drapes is likely to reduce

privacy, while using artificial lighting sources won’t. Different users will have dif-

ferent preferences over these service qualities and will make different trade-offs.

One user might value privacy over natural lighting while another might make the

exact opposite choice. Thus, service qualities must be explicitly represented and

reasoned about dynamically, taking into account the quality parameters and the

user’s desires.
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5.1.4 Preferences

The assumption made in Hyperglue is that the user does not have a direct interest

in the details of how a service is rendered; she cares only about the outcome of

the process. For this assumption to be tenable, we include within the notion of

“outcome” a set of preferences stating the user’s tradeoffs between the different

qualities of service that might be delivered. We allow these to express degree of

preference and to apply to arbitrary combinations of service parameters; for exam-

ple, to continue with the lighting example, the user might state that intense illu-

mination is twice as good as low illumination, or that the combination of intense

illumination and strong privacy is much better than natural lighting alone.

5.1.5 Utility Functions

Because there are trade-offs to be affected, it is useful to transform these state-

ments of preference into numerical values that can be more easily compared. In

addition, as we will describe more fully, there are also trade-offs to be made in

terms of which resources are to be used. In order to allow all of these trade-offs to

be dealt with uniformly, we take advantage of a graph-theoretic algorithm (based

on work by McGeachie and Doyle) for converting the user’s preference rankings

into a linear ordering over sets of service quality parameters. The algorithm con-

structs a graph whose nodes are combinations of service quality parameters and

whose weighted arcs are the user’s expressed preferences. As long as the prefer-

ences are consistent, the graph will be acyclic and simple dynamic programming

techniques can be used to deduce a total numerical ordering consistent with the

preferences. This numerical ordering is scaled to range between zero and a user-

supplied parameter that reflects the maximum cost the user would be willing to

expend in order to reach the optimum quality of service.
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5.1.6 Context

An individual’s preferences are not constant over all times. To continue the light-

ing example, it is obvious that the task the user is conducting (e.g. reading or

watching a movie) or the user’s location may greatly affect her preferences for the

intensity of lighting and the naturalness of the spectrum. Although there are cer-

tainly many other dimensions to the notion of context (e.g. the user’s emotional

state), Hyperglue’s model of context is limited to a few dimensions:

• the time of day

• the task being conducted when the service request is made, and

• the location of the user.

In addition, Hyperglue maintains a context stack representing the nesting of sub-

tasks within larger tasks. The primary role of the context is to provide a set of

default preferences over the qualities of the service to be rendered. The user is free

to override such choices, but our hope is that the default choices are almost always

reasonable and will be adjusted only rarely, as part of a dialogue between Hyper-

glue and the user. In summary, context determines preference, and preferences

are used to rank different methods for rendering a service (via the derived utility

function).

5.1.7 Resource Cost and Allocation

Different methods will require different types of resources, but not all resources are

equal. Some are more valuable, others are more available. Some resources deplete

consumables (e.g. paper in a copier) while most resources have a depreciation cost

(e.g. the bulb in a projector). In order to reflect these differences, Hyperglue places

a cost on the use of a resource. Ideally, this cost would reflect the integration of

all such factors, but the current Hyperglue model is relatively weak. Hyperglue

attaches a fixed cost to the use of each resource, reflecting the relative value of that

resource. In addition, when there is a class of equivalent resources (e.g. more than
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one projector), the cost reflects the intrinsic value of a resource in the class as well

as the size of the available pool. When a method is selected and resources are allo-

cated to that method. Hyperglue’s resource manager updates both its reservation

tables and the cost estimate. Similarly, when a method completes execution and

returns a resource, the reservation of the resource is eliminated and the cost is re-

estimated. The motivation for applying costs to resources is to allow Hyperglue to

be cognizant not only of the benefit that a method will deliver to a user, but also to

recognize that this benefit does not come for free and that the two must be traded

off against one another.

5.1.8 Decision Theoretic Choice

These elements are all combined into an overall decision theoretic algorithm. This

algorithm examines each method capable of rendering the service and then for

each such method finds all possible sets of currently available resources that are

consistent with the constraints of that method. For each such combination of

method and resources, the cost of the resources is calculated. In addition, the qual-

ity of service parameters are calculated and ranked by the utility function derived

from the preferences leading to a numerical benefit. Finally the difference is be-

tween resource cost and benefit delivered is calculated and the combination which

maximizes this net benefit is selected.

5.1.9 Interactions Between Societies

It is my claim that this approach allows Hyperglue to adapt to a broad spectrum of

varying conditions while providing the best possible service. So far, the discussion

has dealt only with the decision making within an individual society. However

the extension to inter-society requests is relatively straightforward: The requesting

society forms a service request including the set of preferences; the receiving soci-

ety adds to this additional preference rankings reflecting its interests. If these joint

preference rankings are consistent, things proceed as above, with the receiving so-
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ciety selecting a set of its resources and a method that optimizes the cost-benefit

trade-off. If the preferences are inconsistent, then the requesting society is asked

to drop at least one preference involved in the inconsistency and the process iter-

ates. Notice that this preserves the principle that each society maintains control

over its own resources while still providing the best service to the requestor that is

consistent with the preferences of the society that owns the resources.

In the remainder of this chapter, I will first fill in many of the details omitted in

this overview discussion. I will then illustrate how Hyperglue’s decision making

architecture supports our scenarios. Next I will review some of the short-comings

of the current implementation. Finally, I will conclude with a discussion of other

aspects of the Hyperglue decision making architecture (e.g. plan execution moni-

toring, access control, diagnosis and recovery, event driven reactive processing).

5.2 Mapping User Preferences to Utility Functions

The reason for using preferences to drive service requests is simple – with pref-

erences, users don’t need to know precisely what contextual situations they are

planning for, or provide guidance for each possible contextual situation. The al-

ternative can get aggravating, because service selections may be highly dependent

on context, and the resulting ramifications can become bewildering. For exam-

ple, consider the simple case of deciding which display to use in an office for text

output:

• Normally, an important message should be sent over email.

• ...except when the primary user is in the room, in which case it should be sent

over the loudspeakers instead.

• ...except when the user is on the phone or a meeting, in which case it’s better

to send it to the main display on the desk.

• ...except when the projector is being used, in which case it’s better to put the

item there.
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• ...unless the message is considered private, in which case putting it on the

projector that’s visible from the hallway is a bad idea...

And the list goes on, with exceptional clauses providing more and more con-

text that needs to be considered, and perhaps overloading the network with con-

ditional values.

So, instead of focusing on how to do the task, we switch our focus to specifying

the desired outcome (e.g. the goal and the quality of service) and allow the Hy-

perglue system to dynamically determine the best possible approach in the actual

context of execution.

Most services can be categorized based on different ‘abstract’ parameters, such

as quality, speed, privacy, etc. Preferences are specified by providing a partial

ordering based on the values of these parameters. Not only are there orderings

based on the single parameter (“I prefer high privacy to low privacy”), but they

can specify orderings across the parameters, so that the user can define that they

prefer output quality to speed. We also can allow weighting on the preferences, to

model a strong preference as compared to a weak one.

Preference matching is inherently easier for the user to handle, because they no

longer have to specify a series of more and more complex contextual conditions

in order for things to work properly. Instead, the user specifies preferences with

statements such as “All other things being equal, I care more about strong privacy

than fast response times.” The advantages here is that the user doesn’t have to

know the space as intimately, and these preferences are applicable in IEs that the

user has never seen.

However, to avoid overwhelming the user (and to allow for new parameters

that get added by new devices), it’s desirable to specify partial ordering for only

some of the parameters, and allow the system to determine the appropriate com-

parisons based on these partial orderings.

We accomplish this by first taking the user’s preferences and turning them into

utility functions, which can return a numeric value for a service based on the user’s

preferences. The inputs to the function are the qualities of service that an indi-
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(define-goal (illuminate)
(privacy private public)
(source natural artificial)
(illumination bright moderate soft))

Figure 5-1: Lisp notation defining a simple illumination goal.

’((source natural (>> 2) source artificial)
(illumination moderate (>> 3) illumination bright)
(source natural (>> 5) privacy private))

Figure 5-2: Simple code describing a preference. Here, the user is indicating that
natural light is preferred to artificial, illumination is better in moderation, and nat-
ural light is much more important than keeping things private.

vidual service provides, and the utility function can thus be used to compare and

contrast services based on the user’s preference set.

5.2.1 Utility Function Calculation

One key element in this process is to transform a set of user preferences over the

service qualities into a single numerical utility function. Consider the (admittedly

simple) goal of illuminating a room. The service qualities we include are: whether

the lighting is natural or artificial, whether the lighting is bright, moderate or soft

and whether privacy is maintained (since opening the shades impacts privacy). In

our system, this information is conveyed in a Lisp-like notation (see Figure 5-1).

The user’s overall preferences are expressed as a collection of individual state-

ments, each of which compares one set of features to another. For example, an

individual quality preference statement might state that natural light and privacy

is twice as good as bright artificial light, “all other things being equal.” The user’s

overall preferences are then a set of such individual preferences.

For example, the code in Figure 5-2 would represent the fact that the user

prefers natural light twice as much as artificial, moderate intensity three times as

much as a bright intensity, and natural lighting five times as much as privacy.

To convert a set of service quality preferences into a utility function we can
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Figure 5-3: Utility Function generation: Creating nodes (here using three binary
parameters) and drawing lines which correspond to preferences (“natural light is
better than artificial”).

rely on techniques developed by McGeachie and Doyle [26]. The essential idea is

to transform the assertions above into a graph, in which each node of the graph

represents a particular assignment of values to the preference variables. Then an

arc is drawn between any two nodes that are related by a preference statement

(see Figures 5-3 and 5-4). After all arcs are added, we then assign a value to each

node by first assigning the value ‘1’ to any node with no outgoing arcs. For the

other nodes, the value is found by iterating over all outgoing arcs and maximizing

the product of the arc weight and the value of the target node of the arc (Figure 5-

5). The utility function then simply looks up the node corresponding to a set of

preference variables and returns that node’s value.

In the event that the feature set of the service is under-specified – for example, it

provides a value for “source” but not “privacy,” – the algorithm chooses the node

with the minimal value for utility. We choose the minimum to avoid dominating

services that are more closely specified to give higher utility values (see Section 5.4

for better ways of handling this condition, however).

The McGeachie-Doyle algorithm used boolean-valued parameters; therefore,

its representation of a node in the graph is a bit-vector with each bit representing

one parameter. One of the drawbacks of this approach is that parameters can only
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Figure 5-4: Utility Function generation: Adding another preference rule (“natural
light is more important than private privacy”).

Figure 5-5: Utility Function generation: Assigning values to nodes based on their
position in the network.
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hold binary values – speed can only be “fast” or “slow”, quality only “good” or

“bad”. We have extended this system to provide for multivariate parameters sim-

ply by turning a series of possible values (e.g. our illumination parameter that can

be “soft, “moderate”, or “bright”) into a set of boolean values that can be fed into

the utility calculation. An implementation of the algorithm can be found as an

appendix (Appendix A.1).

In this modified algorithm, each parameter may take on one of a finite set of val-

ues. We therefore structure our nodes as a vector of (unequal sized) bit segments.

Each segment has enough bits to encode each possible value of the enumeration

– as such, its size is dlog2 |E|e, where E is the set of values in the enumeration.

The graph nodes are then represented as a bit-vector that is the concatenation of

these individual segments. For example, our illumination goal has two param-

eters (“privacy” and “source”) with two possible values (“public” vs. “private”,

and “natural” vs. “artificial”) and one parameter (“illumination”) with three val-

ues (“soft”, “moderate”, “bright”). Therefore we allocate one bit for each of the

first two and two bits for the last, making a vector of five bits in total.

As in the McGeachie-Doyle algorithm, each preference generates a set of arcs in

the graph (because each preference is stated “everything else being equal”). Thus,

if the “foo” parameter is not mentioned in an individual preference statement, the

interpretation is that this statement is true for any value that foo might take on.

Thus given an individual preference statement we perform the following steps:

1. Find all unmentioned parameters;

2. generate all possible assignments of values to all of these parameters;

3. for each such assignment, add the assignment to both sides of the original

preference statement;

4. find the nodes corresponding to the expanded left side and the expanded

right side of this statement; and

5. add an arc between these nodes.
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It is worth noting that this algorithm, like the original McGeachie-Doyle algo-

rithm has a runtime that grows exponentially with the number of parameters. For

this reason, and to avoid overburdening users with numerous options for pref-

erences, keeping the number of parameters small is important. And indeed, in

practice, the number of parameters seems to be bounded by the users’ desire for

simplicity.

There is one further modification of the original algorithm. A preference stating

that I prefer “moderate illumination” to “strong privacy” should be interpreted as:

“I prefer the combination of moderate illumination and not (strong privacy) to the

combination of strong privacy and not (moderate illumination).” In the original

McGeachie-Doyle algorithm, parameters take on boolean values; therefore, one

simply adds to the left side the negation of the right and vice versa. If either side is

a conjunction, then this results in a disjunction and boolean canonicalization must

be performed, yielding more than one derived statement.

In our case, with parameters taking on a value from an enumeration set, the

negation means that we must consider all other members of the enumeration set.

This is easily understood via an example. Suppose we have the following prefer-

ence:

(illumination moderate) (>> 2) (privacy public)

this is expanded to

(illumination moderate) and (not (privacy public) (>> 2)
(privacy public) and (not (illumination moderate))

which in turn is expanded to:

(illumination moderate) and (or (privacy private))
(>> 2)

(privacy public) and (or (illumination bright)
(illumination soft))
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Next, each side is put into the disjunctive normal form:

(illumination moderate) and (privacy private) (>> 2)
(or (illumination bright) and (privacy public)

(illumination soft) and (privacy public))

and then the ”cross-product” of the two sides is formed yielding two prefer-

ences in this case:

(illumination moderate) and (privacy private) (>> 2)
(illumination bright) and (privacy public)

(illumination moderate) and (privacy private) (>> 2)
(illumination soft) and (privacy public)

Each of these preferences is then further expanded by adding in all combina-

tions of the unspecified parameters as explained above, leading to an even larger

set of arcs to be added to the graph. Of course, the last step before actually adding

an arc is in converting from the “property list” format used above into the inter-

nal bit-vector position. This is done via simple book-keeping code that maintains

a mapping between each parameter and its position in the bit-vector and the nu-

merical value assigned to each symbolic value of that parameter.

5.2.2 Simplifying the Calculations Using Context

In the McGeachie-Doyle approach, the contextual elements of the system were pre-

sented as additional parameters to the calculation, allowing the user to specify

that, for example, having natural light is preferable in the morning, but artificial

light preferable in the afternoon, by creating combinations of service qualities with

a “time of day” context parameter (see Figure 5-6).

Using the contextual parameters in this manner can create, as one might imag-

ine, a rather large set of contextual parameters. Since, as noted earlier, the algo-

rithm builds a graph with one node for each parameter combination, the graph
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’((source natural time-of-day morning (>> 2)
source artificial time-of-day morning)

(source artifical time-of-day afternoon (>> 2)
source natural time-of-day afternoon))

Figure 5-6: Specifying context in a preference.

size will grow exponentially with the number of parameters, and using context in

this way could thus significantly increase the time required to generate a utility

function.

One means of simplifying this situation, given the limited number of contextual

elements that we are exploring, is to allow the user to set up different preference

sets, and use the current context to infer the set of preferences we would like to

use. We explore this further in the next section.

5.3 Context and Service Mapping

For many multi-agent systems, service mapping can be handled simply by exam-

ining the service request, and determining an appropriate agent that will satisfy

the request. Indeed, this is the model adopted by many systems, including OAA

and Metaglue. This approach, however, has some shortcomings, and foremost

among these is an inability to adjust to the context of the request.

“Context,” as used here, can be a catchall for a wide variety of issues:

• The services available to fill a request cannot be assumed to be constant, es-

pecially in a long-lived system like an IE. New devices and applications can

be installed or removed, or equipment may break down, and the system will

need to adjust to these changes in the environment.

• The “best” service to provide may vary based on various parameters, such

as a request’s urgency (if I want a message delivered swiftly, using a Western

Union telegram may not be the most expedient method). Some services may

be available only during certain times, and thus alternate services should be

used when appropriate.
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• A user may also have preferences for a default service, and also wish to spec-

ify alternate services which will be used under certain contextual conditions.

Indeed, at one workshop on ubiquitous computing, there was a discussion of

what the word context meant in ubicomp, and resulted in a tongue-in-cheek defi-

nition:

“Context is anything that you don’t want to model explicitly in your

system.”

Whereas this definition is perhaps a little too vague, it contains a grain of truth

– essentially, the context of “X” is usually highly dependent on what “X” is, and

often context is whatever isn’t in “X”. Context may very well be something that

you don’t want to specify explicitly in your service request, but nevertheless you

want applications to recognize and take into account without being told.

There’s also another side to this quote – the necessary contextual elements are

often unplanned by the designers of the system; often, they arise through normal

use, by users who want the world to adapt to the current conditions in ways that

could not be foreseen. For these situations, “context” cannot be a rigid notion, but

one that adapts to the current conditions.

The real issue, for our purposes, is to define what relevant context exists, and

to make use of it. As such, we model context along a limited set of axes. We also

recognize that the coupling of context to service requests is indirect via preferences

– we choose a method because it offers speedy delivery; many contexts might dic-

tate a preference for speed and many others wouldn’t. Thus, preferences separate

context from method choice.

5.3.1 Context in Hyperglue

As noted earlier, we have chosen to model for Hyperglue a small set of elements

to represent the contextual elements in play for a service request – the task being

conducted when the service request is made, the location of the user, and the time
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of day. We choose these elements because they are at once the easiest elements

in terms of obtaining information programmatically, and also arguably the most

important, since they cover the user’s main thoughts of “what I’m doing,” “where

I’m doing it,” and “when it’s happening”.

For each of these, we create a simple ontology for specifying what’s occurring.

Time of day is broken down into simple units such as “morning” or “afternoon”;

the task and locations are defined by simple ontologies that define relationships

and usage to make specifying preferences easier – for example, noting that giving

a presentation is a kind of meeting activity, or that room 32-225 is a private office

of a faculty member.

The “current task” is actually represented as a short stack of tasks, so that we

can, if appropriate, delegate to the previous task context if the current task is not

actually something that helps us choose the correct service. This is inspired by

Ajay Kulkarni’s work on defining and switching task contexts in an intelligent

environment [20].

To utilize the current context, we infer the user’s preferences for his service

request using the current context as a conditional element of the inference. As

noted in the previous section, rather than incorporate context as part of the user’s

service parameters, we instead use context to infer parameters that should be in

the user’s preference set.

We do this by allowing the user to specify different sets of preferences given

contextual situations, and then using the context to locate the set of preferences

that is “most appropriate” for the given situation. In many cases, however, the user

might be making use of the inheritance properties of the task or location ontologies,

or not indicating that the value of a particular context parameter matters. With the

prevalence of these inheritance properties and “don’t-care” values, the means of

searching for the correct set of preferences can be considered similar to that of

generic or “multimethod” dispatch used in many object-oriented languages.

Multimethod dispatch – found in languages such as the Common Lisp Object

System, Dylan, or Nice – is a means of choosing the best possible method based on

89



the type of the arguments used in the request. Whereas in a conventional language,

invoking a method specifies one and only one method can be chosen for a given

name, a multimethod language will examine the types of all arguments and try to

find one of a series of methods which most closely satisfies the arguments.

Similarly, a multimethod service selection engine will take in a number of ar-

guments, including:

• the current location,

• the current task stack,

• the time of day, and

• the user making the request.

It will then use the types of the arguments and the ontologies that describe task

and location hierarchies, and perform a lookup in a set of preferences to find the

one that most closely satisfies the arguments. The resulting preference set is then

compiled into a utility function to choose which of the available services best fits

the current situation.

There are several means of implementing this type of selection. One simple

means, similar to the system used in CLOS and used in Metaglue to perform

method selection, is to examine all the possible matches for the given service, filter

out all those that are completely incompatible with the current contextual argu-

ments, and sort the remainder according to the specificity of the corresponding

arguments – e.g., because 32-225 is a kind of “faculty office”, a preference set de-

signed for room 32-225 will be considered more specific than one designed for any

faculty office. Once the possible matches have been sorted in this way, we use the

highest-ranked set as the most appropriate for the given context.

5.3.2 Implementation Notes on the Context Selection

As mentioned, each element of context needs to be situated in an ontology. For

this, we need to have agreed-upon ontologies for task types, location types, and
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even times of day or year. For design and testing purposes, we have used limited

categorizations (time of day consists only of “morning”, “afternoon”, and “night”,

for example). Once the ontology is set, however, we have a set of location, temporal

and task categories each of which forms a partial order. We note that services

requests are categorized within the task ontology.

Contextualized preference mappings are then expressed by rules whose left-

hand side includes the requested service and the various elements of the context

(time, place and current task) and whose right hand side is a set of preferences.

Each element of the left-hand-side is specified by class within the ontology; a rule

applies if each element of the context is a member of the specified class (including

inheritance) and if the requested service is an element of the task class specified in

the rule. For example, consider a complex context-dependent preference rule:

if the requested task is an information-delivery task

and the location is an office

and the time is normal-working-hours

and the current-activity is desk-work

then prefer intrusiveness low to speed fast by 2

and prefer privacy to speed fast by 3

This rule would be relevant if the current location is 32-225, it’s 4PM, the user is

writing a paper and the requested service is to notify him of an upcoming seminar.

The inference process proceeds in 3 steps:

1. Fetch all applicable rules;

2. filter out dominated rules; and

3. combine the results

The first step is straightforward: given the actual values of the requested task

and the contextual elements, we find all rules whose specified categories apply to

the corresponding actual values.
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The second step maps over these and eliminates any rule that is dominated by

another. Rule A dominates Rule B if every argument of A is strictly more specific

than the corresponding argument of Rule B. Given that the ontology forms a partial

order, given any two values within it one may be more specific than the other or

the two values may be incomparable. Two rules may be incomparable if 1) they

have a single argument where the values in the two rules are incomparable; and 2)

each has some number of arguments that dominates an argument from the other.

At the moment we do not filter out incomparable rules and we include both in the

final set. However, we believe that a better design would check for this at design

time and notify the programmer that there is a conflict.

The final step runs all the results and combines the sets of preferences from

each individual rule into a single set.

We describe this as a rule-based inference process, but in practice the imple-

mentation could employ capabilities from the underlying programming language.

For example, given the multimethod and method combination capabilities of CLOS

and other languages, this whole process is implemented just as method invoca-

tion.3

5.4 Extensions to the Service Mapping Algorithm

In Section 5.2, we have seen how a set of preferences defined by a user can generate

a utility function, and how such a utility function can be used to drive the selec-

tion of an appropriate resource. Because we also have a resource cost associated

with each provided service, the selection algorithm makes a choice that maximizes

the difference between the calculated utility of a service and the service’s aggre-

gate resource cost (this difference is the “benefit” of a service). This code for this

algorithm is in Appendix A.1.

It has been noted, however, that this design may not take into account a full

3To be precise, the method combination under a CLOS-style system is “append,” and the task,
place and time ontologies are mapped onto the type system of the language.
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Figure 5-7: Evaluating all services at the top level.

decision tree for resources. For example, when deciding to display a message to a

user, the algorithm as designed would be deciding between, say, delivering SMS

text to a cell phone, sending email, or displaying the message on a nearby projec-

tor. Given the current algorithm, the most accurate way of taking into account all

the possible parameters would be to consider all the possible means of delivering

every possible service at the same time (see Figure 5-7), rather than as a hierarchi-

cal decomposition (Figure 5-8). This results, however, in a single global decision

engine, and could generate scaling problems when the tree becomes overly large.

We could attempt to remedy this by examining the services hierarchically, using

a generic “email service” or “projector service”, which utilizes estimates of service

quality and resource costs, based on the average quality and costs that its sub-

services typically render. Then, the service mapper could be called upon again to

choose between the individual projector or email provider. The problem with this,

of course, is that we’re not taking a true account of the current quality or cost of

the individual services, so we may end up making a non-optimal decision. For

example, if in general projectors give us a high utility in comparison to cost, using

a multi-step algorithm will tend to choose them. But if a high-utility projector

is unavailable, its resource cost will be prohibitively high, and we may end up
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Figure 5-8: A hierarchical decomposition of services.

choosing a less optimal projector when sending email would be preferable. In

effect, we would have chosen a local maximum for our utility calculation, and

missed the global maximum.

In this rest of this section we describe an extension to the service mapping al-

gorithm describe so far. This extended service mapping engine supports: 1) hier-

archical task network planning; 2) accurate decision-theoretic selection of the set

of resources and method and (recursively methods and resources for the required

sub-services); and 3) branch-and-bound pruning of the search tree.

5.4.1 Using Bounds Calculations

As it turns out, the algorithm can be easily modified to take into account a hierar-

chical decomposition of services, and perform task planning in that case far more

correctly. First, we modify the algorithm so that the generated utility function

is no longer a simple mapping of service parameters to a single numeric value.

Instead, we create a function that describes the range of utility that the function

provides. Hence, the generated utility function is no longer a simple mapping of

service parameters to a single numeric value, but instead takes any subset of the

service parameters and returns two numbers – the maximum and minimum util-
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ity values that can be realized given the specified parameters and any value of the

unspecified parameters.

In the original algorithm calculating the utility of a given service, we simply

found the node that exactly matched the specified qualities of service. This is done

by iterating over the provided parameters, finding the corresponding numeric en-

coding for that value of the parameter and concatenating these into the overall

bit-vector description of the parameters. This is then used to index into the table

of all nodes in the space, thereby fetching the utility corresponding to the specified

set of service parameters.

However, like the preferences, the service itself might be under-specified; it

might provide a value for “quality” but not “privacy”, for example. In effect, the

service itself has parameters that are “don’t care” values. Whereas the initial ver-

sion of the algorithm simply chose the minimum utility value to avoid dominating

better-specified services, we can instead examine the entire set of nodes that match

the service parameters, and discover the minimum and maximum values for the

utility calculation. This can be done with the following simple alteration to the

utility function (shown in Appendix A.2):

• Initialize the maximum and minimum values to “unknown”.

• Generate all combinations of all values of the unspecified parameters.

• For each such combination,

– append these to the provided parameters;

– fetch the corresponding node; and then

– maximize and minimize this value into the maximum and minimum

values respectively

• When all combinations are evaluated, return the maximum and minimum

values.

Note that if all parameters are specified this returns the exact value as both the

maximum and minimum.
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5.4.2 Hierarchical Task Planning

Once the bounds calculations are in place, we can change service descriptions to

better include sub-service requests (sub-goals, essentially). For example, the “pro-

jector display” service for a given room includes a request for a simpler “projector”

service, and we use that service to get an API for performing the actual display

operation. Also, we provide individual resources for “left projector” and “right

projector,” along with their appropriate resource costs. This creates a hierarchy of

service descriptions which looks more like the design in Figure 5-8.

The design for the plan selector needs to change in order to take this into ac-

count. It now needs to descend the service hierarchy to locate the best solution.

We do this in a depth-first traversal of the service tree.

In addition, we use unification – in the logic programming sense – to connect

the service parameters of the sub-services explored lower in the tree to those of

the top-level service request. This means that method descriptions need to spec-

ify how the choices of resources and methods for sub-goals affect the service pa-

rameters of the sub-service for which this method is being explored. Unification

connects these parameters to those of the next higher level sub-service in the tree,

and so on up to the top-level service request. When returning from a branch of

the search tree, the bindings of the variables are undone, using standard logic pro-

gramming mechanisms.

Luckily, the utility bounds calculation of the previous section allows us to prune

away sections of the tree during the search:

• The utility function that is invoked on each step of the search needs to only

examine the service parameters of the top-level request. In other words, we

never need to bother with attempting to find a heuristic function for each

sub-goal that might lead to maximizing the value of the solution to the top

level goal. We simply evaluate each possible realization of a sub-goal in terms

of its effect on the top-level goal.

• At each node in the hierarchy, we use the utility bounds calculation to cal-
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culate the range of utility that the service can provide. This provides a max-

imum bound on the utility of the service and its sub-services, and thus a

maximum on the net benefit of the plans.

• As we descend the tree branches, we accumulate the resources that are re-

quired for the entire branch, and the cumulative cost that those resources

impose. Thus, as we descend the branches, resource costs can only rise.

• Because of this, the benefit of a service (utility minus cost) can only de-

crease as we descend the tree and bind the resources associated with its sub-

services. Hence, if the maximum possible value for the utility of a branch

drops below the currently calculated maximum value for the benefit, we can

prune away the further descent of the tree at that point.

In effect, this is a depth-first branch-and-bound traversal of the tree. The prun-

ing algorithm improves the runtime of the overall algorithm, so that we don’t have

to do an exhaustive search of the possible space.

Each method description includes a set of resource requirements and a set of

sub-services. The algorithm begins with the original service request and then pro-

ceeds by depth first search, conducting the following steps on each sub-service

request:

• Consider each method for the service.

• For each method, considers all possible set of resources matching the re-

source requirements of the method description.

• For each set of resources, calculate the added cost of these resources and add

these costs to the total resource cost accumulated so far.

• Use the method description to bind any service parameters effected by the

choice of resources.

• Calculate the maximum of utility possible given the set of specified top-level

service parameters.
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• Calculate the difference between the maximum utility and the total resource

cost accumulated so far and consider this as an estimate of the net-benefit of

this branch of the search tree.

• If a complete solution has already been found compare its net benefit to the

estimated net benefit of the previous step. If the estimated net benefit is less,

cut off this branch.

• Otherwise, consider each sub-service request in the method description and

recurse. As each sub-service is explored, its effect on the top level service

parameters is calculated and the bounds on realizable utility are recalculated.

• When a complete solution is found, calculate its net benefit (utility minus

resource cost). If this is larger than the best net benefit found so far, update

the best net benefit to the new value.

The critical step in this process is the cut off. To see that the cut off is admissible

we need to consider the following two points:

1. The total cost of the resources used on a search branch only increases as the

depth first search goes deeper into the tree. This is true because each sub-goal

only adds new resources and no resources have negative cost.

2. The maximum realizable utility can only decrease as the search goes deeper

in the search tree. This is more subtle, but still easy to see:

As the search proceeds down a branch of the tree, the number of bound, fully-

specified top-level service parameters increases monotonically. But calculat-

ing the maximum deliverable utility involves iterating over a set of nodes in

the utility space corresponding to those nodes that have the specific values

of the specified values and any combination of the unspecified parameters. As

we move down the search tree, previously bound parameters never change

their value but unbound variables become bound.
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Because of this, the set of bound parameters is always a superset of those

available at any higher level node along this branch, and therefore the num-

ber of nodes searched in the utility space must be a subset of the parameters

being investigated at any higher level along that branch. Therefore, the max-

imum utility value can only be lower than that obtained at any higher level

node along the same branch of the search tree.

Summarizing, as we go down a branch of the search tree, maximum realizable

utility decreases monotonically and cumulative resource cost increases monoton-

ically. Therefore the net-benefit (the difference between these two) monotonically

decreases. This is precisely the condition needed for branch-and-bound cutoff.

Note that we’re not performing any kind of heuristic for searching the sub-

services; i.e., we’re not trying to sort them by lower resource cost in an effort to

perform an earlier pruning of the tree. This is because the only effect a new service

can have is on the binding of the top-level service parameters, and that’s the only

metric that actually impacts the algorithm.

With these changes, we have turned the paradigm for method selection into full

decision-theoretic hierarchical task-net planning, yielding a far more robust result.

Appendix A.3 contains the modifications necessary to implement this algorithm.

5.4.3 Reliability of Resources

One more wrinkle is introduced when considering the resources – sometimes, they

fail. Resources are rarely perfectly reliable, whether through hardware failure (the

bulb in a projector has died; a needed computer has been unplugged or crashed)

or through software problems (a server has been overloaded; network connectivity

problems), or even just simple errors. We can change our calculations to take this

into account, by changing the expected benefit to scale the utility according to the

probability that all the resources work.

But how do we calculate the probability that a resource will work? One simple

estimate is to track failures that are noticeable to the system itself; if a resource call
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fails (for any reason) or raises an exceptional condition, we mark that information

into the permanent storage for the resource information, along with a running to-

tal of the number of times the resource has been called. This will give us a rough

estimation of the probability that the call will succeed, based on previous history.

Although there may be errors that are not visible to the call (for example, a failed

projector bulb may not result in a error that is visible within the system), we op-

timistically choose to believe that such errors are rare and software problems will

dominate.

Similar to the resource cost, we also track a resource’s “cost of failure”, which

serves as a penalty for choosing an incorrect resource.

We then change our hierarchical planner so that it uses the probability in the

calculation, changing the calculation of utility so that it is multiplied by the accu-

mulated probability that the resources are working, and augmenting resource costs

with their failure penalty (scaled by the probability that the resource will fail). Be-

cause the probability that all resources work can only decrease as we descend the

service tree and add more resources, our branch-and-bound design in the previous

section still works. Code that performs this is included in Appendix A.3.

Note that this code optimistically chooses to believe that all failures are inde-

pendent. We assume, for example, that the probability of failure in sending mail to

one server is totally independent from the probability of sending mail to another

(when, in actuality, the probability of failure in sending mail may be affected just

as much by the local mail handler than the conditions on the remote server). To

do this properly would probably require implementing Bayesian networks to get

a better estimate of the true joint probability.
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Chapter 6

SEMANTIC: A Semantic

Network-Based Knowledge

Representation

6.1 Knowledge Infrastructure

In order for any IE to operate (or, indeed, for the operation of any computer system

that must catalogue or interpret real-world events), it needs a means of organizing

knowledge about the world and its inhabitants, and for making inferences based

on that information. In our scenario, it is easy to see several categories of informa-

tion that need to be stored:

• Information on the system’s users (Alan, Beth) and simple information about

them (email addresses, phone numbers)

• Presence information (Beth is located in a conference room, Diane is else-

where)

• Location context (Beth’s location is currently noted as the room for a cur-

rently active meeting)

• Preferences (Diane prefers to get messages via phone)
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• Device information (The conference room has speakers and displays)

Of course, any suitably flexible environment must also maintain a great deal

more information for other, more specific tasks. For example, the “meeting mode”

that the conference room has entered is indicative that the environment is perform-

ing a large number of support tasks for a meeting, which may also require tracking

and presenting:

• Meeting attendees

• Agenda items

• Recordings of the meeting, through a secretary’s minutes, or through any

capture devices available (audio, video, whiteboard capture)

• Documents that need to be entered into the meeting record

• Discussion points that get raised

• Action items that get assigned to attendees

...and the list continues. Because many of these items reference other items in

the knowledge base (for example, a list of the meeting attendees probably refer-

ences several other users of the system, like Beth), there is a benefit in being able

to store these differing pools of information in a common knowledge repository,

rather than dividing them into separate knowledge “fiefdoms” that would need to

be linked together by each application referencing the knowledge structure.

Looking at the needs of the IE, we can create a series of requirements for an

environment’s KR. These include:

• Efficient Update and Retrieval

• Persistence

• Inference Generation

• Transparency
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6.1.1 Efficient Update and Retrieval

Since uniting all the different nuggets of information into one store is beneficial to

the applications making use of the data, being able to operate on the knowledge

store swiftly is an important design goal.

Although this is true for all KR implementations, the necessity is larger with an

IE, because the breadth and information is so much larger.

As the number of relationships being stored grows, steps will need to be taken

to ensure that adding a meeting agenda item or querying a user’s location does

not require that the environment be taken offline.

The KR must also be designed with an eye towards the kind of query opera-

tions that should be performed. If all operations are along the lines of “tell me

what room Beth is in,” it is much easier to structure the KR for efficient retrieval

than “give me the location of every conference room on the 2nd floor that has a

projector”. Although such a complex query may need to be performed by the IE,

there may be a value in simplifying the request so that the IE has to perform several

queries in sequence to filter the result set appropriately. In addition, simplifying

the types of queries that can be performed has an additional benefit in that it sim-

plifies the KR interface for the applications (as will be shown in Chapter 6).

6.1.2 Persistence

Because an intelligent environment should operate continually, IE applications

need to be designed for much longer lifetimes than typical desktop software appli-

cations. To ensure that the IE is responsive to the needs of its users, applications are

usually designed to be in a constant event loop, waiting for commands. As such,

pieces of IE applications often have a very open-ended design, and don’t have a

specific “exit” or “shutdown” command. The fragile state of leading-edge hard-

ware and software, however, occasionally means that the operating platform may

cause the applications to terminate or freeze without warning.

For this reason, any KR needs to checkpoint its state to a persistent storage
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device, so that when the IE is revived it can resume functioning where it left off.

Although the KR can cache information in memory in order to speed retrieval, any

updates need to be written to a persistent medium as swiftly as possible. Updates

should also be transactional, so that the representation will never be in a state

where a change has been executed only halfway – either the change was committed

or it wasn’t.

6.1.3 Inference Generation

For maximum utility, the IE needs to be able to easily link together disparate pieces

of information in order to assist the user. For example, a user might be interested in

learning more about the Lisp programming language, and be using an IE to assist

him in navigating through online programming resources. If the IE can recognize

that he is trying to gather information on Lisp, it may be able to search through

the recorded interests and expertise of the user’s coworkers and find one with

the appropriate knowledge – or even suggest that the user contact a friend who

recently attended a meeting where Lisp was heavily discussed.

Being able to perform this kind of operation requires that the KR used must be

able to take into account two disparate pieces of information (a user and a topic

area), and generate a series of links that can be presented for user evaluation to

determine whether it is useful. Of course, concision is useful here; it is likely more

appropriate to find just a few simple links between the two items than a meander-

ing path through the knowledge base that encompasses lots of information.

6.1.4 Transparency

There is also a value in transparency. By this, I mean having the format of the

knowledge base track as closely as possible the relationships and descriptions that

humans use to describe the data – in essence, being able to have as direct a rep-

resentation for the phrase “George is having a meeting in room 232” as possible.

By having the representations match the user’s assertions, there is less of a worry
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of translation errors between the user’s view of the world and the IE’s knowledge

base.

Of course, this is likely impossible to achieve perfectly, since doing so would

require a system with perfect recognition of English grammatical structure to make

querying useful. However, an attempt can be made to provide a reasonable com-

promise between strict English sentences and data storage, by translating the En-

glish into simpler data forms that express relationships.

6.2 The Semantic Network

To satisfy these goals, we require a KR that can easily encapsulate the many differ-

ent objects and associations implied by the text, including the people, spaces, lo-

cation information, devices, meeting modes, preference representations, etc. What

is needed is a representation that can store information on objects such as people

and spaces, but also can easily track and follow the relationships between them.

One such representation is a “semantic network”, which has its roots in Quil-

lian’s work on reasoning in computer environments [38]. This work represented

knowledge as concept nodes related by directional relationship links, representing

the world as a directed graph.

Exploring the framework of knowledge in such a system, therefore, is as easy

as moving from a node along one or more links to discover related information.

For example, finding Beth’s current location might be as simple as starting at the

node representing Beth, moving along a “located-in” link to find her current space,

and then following the links to determine the device agents currently available in

the room. This structure makes it easy for an intelligent system to uncover infor-

mation about a particular topic, as well as to discover the relationships between

two different objects.

The semantic network also satisfies many of the other conditions imposed by

the IE. It is easy to encapsulate into human-readable form (either through graph

networks or simple text representations); it’s simple to add new information in a
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localized fashion; and making inferences is often merely collecting links and fol-

lowing them.

Much of the work behind semantic networks is being continued on a grander

scale by the World Wide Web Consortium as part of their Semantic Web project [5].

Much of that project focuses on addressing the central problem of larger semantic

networks – most notably, the problem of unifying large or multiple ontologies.

The problem with multiple ontologies is straightforward to describe, but diffi-

cult to overcome. Although it is easy to describe a mapping from a human-centric

view of the world (people, places, things) into a set of descriptive names, such a

mapping is bound to be highly domain- or location-specific. When different people

try to create their own mappings, they either have to shoehorn their own mental

model of the mapping into one created by somebody else, or create their own,

separate mapping. The Semantic Web project has spawned technologies for trans-

lating one ontology into another, so that people can choose either to use someone

else’s ontology or “roll their own” as they see fit. One such technology is Fensel et

al.’s OIL [10] and its more recent offpsring, OWL [40]. Although our current work

is not focused on overcoming the ontology problem, we are looking towards this

and related projects as extensions to our work.

6.3 Design and Implementation

For the purposes of the Metaglue-based IE, I have developed an implementation

of a semantic network featuring the above attributes, which I refer to rather simply

as SEMANTIC.

6.3.1 Database

Although SEMANTIC has a modular design which could allow for different back-

end implementations, the current implementation is designed around a SQL-based

backend, built around the MySQL database server[31]. MySQL is an open-source

106



database product, designed more for speed than for full transaction-based ‘ACID’

(atomicity, consistency, isolation, durability) compliance (although recent versions

of MySQL do in fact enable ACID features under limited conditions). The Meta-

glue semantic network implementation, however, can easily use a different back-

end, and has been successfully operated using the ACID-compliant PostgreSQL

database [37].

The SEMANTIC database design consists simply of two tables. One of these

merely holds the list of active node identifiers in the database. The other is a table

of tuples holding the node data, linking node identifiers and keys to the values

for each key. Simple information for a person might be stored in a set of tuples as

follows:

〈 10342, is-a, semantic.Person 〉

〈 10342, name, “Bruce Wayne” 〉

〈 10342, email, bwayne@gotham.gov 〉

〈 10342, birthdate, ‘May 27, 1939’ 〉

〈 10342, employee-id, 928340 〉

As is implied by the above, the data for the value can vary widely in type,

from character strings to dates and integers. Since SQL databases require that the

columns be strongly-typed, all these values are turned into character string values

for storage.

For all objects, there is a special key, is-a. This defines the type of the object.

This is usually the name of a Java type for the object, thus providing a simple

ontology for the system to use and making it easier to write Java-based Metaglue

agents that can utilize the system. As a side benefit, the Java type is used to guide

the interpretation of the value fields.

The database is indexed based on the unique identifier code and the tuple key

(in the above example, the first and second columns of the tuples). The key values

are by default not indexed, although adding in an indexed column by hand has

been found to have benefits.
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6.3.2 Java-Based Interfaces

All SEMANTIC types inherit from a single superclass, UniqueID, which provides for

a Java object with a unique identifier code. Users creating a new node type for the

semantic network can do so simply by creating a subclass of UniqueID, and can

then install instances into storage simply by calling the updateObject() method.

That method will ensure that the database has all the proper values for the node

keys.

SEMANTIC uses the Java reflection API in order to determine the set of keys

to install for a given node. Any Java field that is not marked as special (i.e., that

doesn’t have the “transient”, “static”, or “final” modifiers set) are automatically

stored as tuple sets into the SEMANTIC storage. Fields that contain other UniqueID

objects are automatically converted into node references, and the referenced object

nodes are stored or updated at the same time. Other useful node types, such as

dates, numeric values, or booleans, are converted to and from strings as appropri-

ate. Special handling is also provided for standard Java arrays, as well as members

of the Java Collection framework, to also automatically store those fields as tuple

sets linked to the node identifier.

Similarly, the SEMANTIC links are all subtypes of a Link subclass of UniqueID.

Link provides for the simple linking together of two different nodes using “from”

and “to” fields, which, just as with all UniqueID subclasses, get converted into

tuples as described above. Because Links are also Java objects, they can contain

other information that can be used to describe the parameters of the link – for

example, allowing agenda items to be linked to a specific meeting together with

a status code describing the importance of the item in that gathering (since often

the same item may appear in different meetings, but have differing importance

depending on the meeting focus).

All UniqueID objects can be queried directly by object ID, or by finding a set

of objects that are similar to a provided prototype. For the prototype matching,

a programmer can create an instance of a node class, set values for fields that he
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Person test = new Person();
test.setEmailAddress("bwayne@gotham.gov");
List l = test.findSimilarObjects();

Figure 6-1: Java code to get people who have a given email address

ConditionCollection cc = new ConditionCollection();
cc.addRange("startTime",

new TimeStamp(early.getTime()),
new TimeStamp(late.getTime()));

List lst = UniqueID.findObjects(cc);

Figure 6-2: Java code to find objects that have a “startTime” field between two
given times.

wants to use as match parameters, and call the findSimilarObjects() method to get

a list of objects that match the parameters. For example, the code in Figure 6-1 will

locate the set of objects in the network that are of type (or subtype) Person, and

which have an email address field set to ”bwayne@gotham.gov”.

More complex queries can be constructed using the findObjects() method and

its associated classes, ConditionCollection and TuplePattern. ConditionCollection

holds a simple collection of clauses that allow for more intricate query terms, such

as finding all objects with keys that are greater than a given sentinel value, or

specifying a discrete set of candidates that a value can match, or a range that a

value can fall into (see Figure 6-2). The elements of the condition can be specify

either exclusive (OR) or inclusive (AND) matches in the result to allow for more

complex node queries.

TuplePattern is also based on the notion of providing a set of clauses for com-

plex node setups, but acts on the base tuple sets of the database, in much the same

way as the query interfaces described in the next section.

6.3.3 Query Interfaces

Although the Java interfaces allow for querying of nodes using the findSimi-
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List out = new ArrayList();
Group grp = new Group();
grp.setName("MyGroup");
List l1 = grp.findSimilarObjects();
if (l1.size() == 1) {

Group g = (Group)l.get(0);
MemberOf m = new MemberOf();
m.setToNode(g);
List l2 = m.findSimilarObjects();
Iterator iter = l2.iterator();
while (iter.hasNext())

out.add( ((MemberOf)iter.next()).getFromNode() );
return out;

} else {
throw new Exception("found more than one match");

}

Figure 6-3: Java code to get people who are members of a given group.

(ask ’((?x is-a semantic.Group)
(?x name MyGroup)
(?y is-a semantic.MemberOf)
(?y fromNode ?x)
(?y toNode ?z)))

Figure 6-4: Pattern-matching code to get people who are members of a given
group.

larObjects() and findObjects() methods, there are drawbacks with that approach.

More complex queries inevitably require the use of several different objects all

linked together. For example, to find the set of people who are members of a given

group, you would first need to query for a node representing the group, then query

for membership links that point to the group node, and then return all the source

nodes in a list (see Figure 6-3). This code can be fairly complex, and dealing with

odd conditions makes it even more so.

To alleviate this, a rule-based pattern matcher was written in Scheme using the

Java-based Kawa Scheme engine ([6]) and implemented to make queries like this

simpler to write and easier to understand (Figure 6-4). Because the pattern matcher
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(define-rule links
((?l is-a ?type)

(?l fromNode ?f)
(?l toNode ?t))

=>
(?f (link ?type) ?t))

Figure 6-5: The “links” rule for the query engine.

(ask ’((?x is-a semantic.Group)
(?x name MyGroup)
(?x (link semantic.MemberOf) ?z)))

Figure 6-6: Using the links rule to get people who are members of a given group.
Note that this will perform the same search as in Figure 6-4

is rule-based, we can also create a links rule (Figure 6-5) which can make queries

involving links a bit easier to write (Figure 6-6). In this instance, the backward-

chaining rule engine will search backward through the rules to resolve the (?x (link

semantic.MemberOf) ?z) into the correct result.

In response to concerns from the Ki/o kiosk effort, a new Java query interface

that provides some of the utility of the query code has also been provided. Al-

though this interface does not employ the rules engine of its Scheme-based coun-

terpart, it allows a piece of Java code to perform very efficient searches in much the

same way as the Scheme engine, but without the overhead of running the Kawa

subtask. An example can be found in Figure 6-7.

6.3.4 Triggers

Both the Java and the query engine have support for triggers; that is, allowing for

code to be called when a new piece of information is added into SEMANTIC. On the

Java side, there is the TupleListener interface, an method definition which can be

implemented by any agent in the system to enable a callback for new or updated

tuples in the SEMANTIC storage. The Java code then can perform further tests on
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TuplePattern tp = new TuplePattern("z");
Object x = TuplePattern.mark("x");
Object y = TuplePattern.mark("y");
tp.addPattern(x, "is-a", "semantic.Group");
tp.addPattern(x, "name", "MyGroup");
tp.addPattern(y, "is-a", "semantic.MemberOf");
tp.addPattern(y, "fromNode", "semantic.Group");
tp.addPattern(y, "toNode", TuplePattern.mark("z"));
List lst = UniqueID.findObjects(tp);

Figure 6-7: Java-based pattern-matching code to get people who are members of a
given group. This will perform the same search as that in Figure 6-4.

(define-trigger
(send-email-for-discourse (?link fromNode ?d))
((?link toNode ?t)

(?d is-a applications.meeting.DiscourseItem)
(?t is-a semantic.Topic)
(?e email-interest ?t))

=>
(printout (quote ?e) ": " (invoke ?d ’getSubject)

" is part of topic area "
(invoke ?t ’getName) ))

Figure 6-8: Trigger definition for reporting on new meeting information that
matches a given topic.

the matched tuples to determine whether it can make use of the new information.

Similarly, the query engine allows for trigger bodies to be created based on new

or updated information, and further allows the rule engine to perform better fine-

tuning of the results, automatically creating a rule which will fire when a new tuple

is created, but only when the tuple matches information already in the system

(Figure 6-8).

6.3.5 Requirements Utility

Turning back to our list of requirements for the knowledge representation, how

well does this representation address them?
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Efficient Update and Retrieval As long as the basic operations of creating nodes

and links are reasonably efficient, the efficiency of updates is similarly so.

Since each node and each relationship is represented just once, the update

efficiency is related closely to the more primitive creation operations.

In SEMANTIC’s implementation, a well-indexed SQL backend can perform

highly efficient updates and additions to the data store, resulting in updating

times proportional to the number of tuples used in the node or link.

Retrieval operation efficiency is closely related to the indexing used in the

SQL database. Finding information when the UniqueID’s unique identifier

is already known is relatively fast; if a node needs to be searched for based

on other information (for example, looking for the person whose email ad-

dress is "bwayne@gotham.gov" ), is highly dependent on the indexing of

the tuples. Providing a full-text index on the key values can speed this up

substantially.

Persistence By constantly storing information into a persistent database, this re-

quirement is easily satisfied. The SQL backend is constantly checkpointing

the state into a filesystem. The SQL framework also assists with making sure

that updates are performed in an atomic fashion, and that objects are not

stored in a half-completed form in the database.

Inference Generation The TuplePattern design is used to link disparate objects

together, and allows for easy generation of links between two items and effi-

cient querying of those links.

Transparency Although this is difficult to quantify, the storage format allows users

or programs that wish to pull out the right information to write small queries

that will easily get the necessary match. In addition, users can benefit from

simple graphical visualization tools (see Section 6.5) which show the network

as an easy-to-read graph.
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6.4 Usage

The SEMANTIC implementation is currently used as the basis of several projects,

including the Computer Science and Artificial Intelligence Laboratory (CSAIL) OK-

net project[17], which is deploying kiosks throughout the CSAIL building to en-

hance information dissemination and collaboration. That project uses SEMANTIC

to store hundreds of notices and news items, as well as information about peo-

ple and places in the lab, and then links them all together according to people’s

interests and the kiosk’s location.

While developing this system, we have identified several areas in which using

a semantic network-based representation is an appropriate and valuable piece of

infrastructure for intelligent environments such as this one, most notably in the

areas of user information, meeting management, and location infrastructure.

6.4.1 User Knowledge

One of the key pieces of knowledge for any intelligent space is that of the users

and the individual spaces they work with. At a simplistic level, this can simply be

a set of objects comprising spaces, how they are encapsulated within each other,

and the user’s current location. This gives access to straightforward queries like

“where is Steve located” and allows for simple resource management dependent

on the task and space involved [11].

However, in order to make a system that truly acts as an “intelligent assistant”,

you need to include far more information about the people and their relationships.

Such systems need to be able to respond to queries and requests such as:

• “Send this information to everyone in the group.”

• “Who is Joe’s supervisor?”

• “Do I know the person who is responsible for this group’s activities?”

For this, we augment SEMANTIC with information on groups of people, and the
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Steve Howie

Room 832 Lab

8th Floor

Building

currently-in currently-in

part-ofpart-of

part-of

Figure 6-9: Simple Layout for Users and Spaces

relationships between people, including notations about responsibilities and hier-

archies (see Figure 6-10). In addition, we are providing information on interests

and expertise to enhance “intelligent assistant” roles for the IE. Such information

will enable our agent systems to respond to more complex requests for informa-

tion, and provide introductions to enhance communications between users:

• “Send this information to group members interested in HCI.”

• “Do I know anyone who is an expert in writing LISP code?”

• “Who do I know who can introduce me to a LISP expert?”

6.4.2 Meeting Management

Some applications now use SEMANTIC to capture meetings as they occur, linking

together the main meeting topics along with their contributors and attendees. Typ-

ical information that gets captured during a meeting includes agenda topics, action

items, supporting and dissenting arguments, and documents such as presentations

or web references. People are linked in as meeting attendees, document authors,
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Figure 6-10: Extended layout, adding information on interests, expertise, hierar-
chies, and groups

and as issue-raisers. When meetings take place in instrumented environments,

they can be linked to a video or audio capture of the meeting in progress.

Using the philosophy that meetings are not the primary piece of information,

but merely a framework for examining and disseminating information, the discus-

sion topics within the meeting management software can be linked together. This

makes it possible to review proposals as they travel through a long-term set of

meetings, and to ask the system questions regarding previous meetings discussing

the current topic.

6.4.3 OK-net Project

The OK-net[17] project also makes liberal use of SEMANTIC to store information

about people, places, and relationships between them, in order to support collab-

orative event filtering and to provide directory and guidance operations for the

CSAIL organization from several. The project also stores and organizes informa-

tion on thousands of events occurring on the MIT campus.
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6.5 Visualizing Semantic Networks

One of the nice aspects of the semantic network is that it provides for an easy trans-

lation from a network fragment into plain English representation. For example, the

fragment found in Figure 6-9 clearly represents a handful of English sentences:

• Steve is currently in Room 832.

• Room 832 is part of the 8th floor.

• The 8th floor is part of the Building.

• Howie is currently in the Lab.

• The Lab is part of the 8th floor.

With simple knowledge of what a link between two objects means, and the

name of any given object, any network fragment can easily be converted between

natural language and network representations. Indeed, systems like Katz’s START

system[15] can already perform a decent job of translating from English into a set

of simple tuples like those that we show in Section 6.3.1.

Interfaces to examine the network in a visual manner are also highly useful.

As such, applications which allow a user to explore the semantic network as inter-

connected graph nodes can be useful. I’ve created one such application, based on

the TouchGraph [41] graph manipulation tool. The tool can be set to only display

a bounded selection of nodes, centered on one element in the network – that is,

displaying only those nodes that are a maximum of, say, three links away from

the focus (see Figure 6-11). Nodes that are at the periphery of this “locality” are

notated with the number of links that are connected to them.

More elaborate graphs can also be printed offline by generating large maps

of data and turning them into images, using AT&T’s GraphViz software layout

tool [9]. For an example of this, see Figures 6-13 and 6-14 later in this chapter.
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Figure 6-11: The Semantic Network browser interface
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6.6 The Meeting Management Application

It may be useful to examine one of these applications in depth to get a real sense

of how the network gets created and what it can provide. For this reason, we will

go into some detail here about how the MeetingManager application utilizes the

tools of the semantic network and the Intelligent Room.

The Intelligent Room project uses the Java-based Metaglue agent infrastruc-

ture [8] to build agents that can communicate with each other. These agents are

identified by their function, so that, for example, the agent that activates projec-

tion screens within a room is called the ProjectionScreen agent. For the most part,

agents communicate with each other through direct, one-to-one remote method

calls, although broadcasting facilities are available.

The current version of the MeetingManager application builds upon initial work

by Oh et al. [33], who created an application to demonstrate the use of an intel-

ligent room in a collaborative meeting context. That application maintained in-

formation about the agenda, major issues raised, and any commitments agreed to

during the meeting time. It could also record information to link in these events

with a QuickTime recording of the session. Although it performed well as a dem-

onstration, it was hampered by a lack of robustness in the data model, with an

inability to capture anything deeper than the broadest points of a discussion, and

no capacity for reviewing and augmenting the discussion off-line.

This evolution of the MeetingManager application encompasses several agents

that act in concert. The first of these, MeetingModel, serves merely as an interface

to the semantic network and abstracts out some of the network lookup tasks into

simpler methods. It also has the ability to broadcast any changes made to the meet-

ing structures to other agents that request them. We suspect that this will likely be

a design feature of many of the Intelligent Room’s semantic network applications,

since having one agent which can coordinate and monitor the KR for appropriate

changes prevents duplication of code and provides for better data abstraction.

Other agents are available which provide different interfaces to the meeting
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manager data. One, the Gui agent (see Figure 6-12), builds a tree-structure view of

the meeting information and allows easy creation and editing of topics, issues, and

discussion points. This editor serves fairly well as a primary interface for a meeting

recorder as he or she takes notes. Currently, this is the primary conduit for meet-

ing information to get into the semantic network, although we expect that in the

future our IE implementations will add in some of this information itself (such as

automatically recognizing meeting attendees and using knowledge about seating

arrangements to determine who is raising the discussion points), and to provide

more robust interaction with the room (such as using more voice commands to

create nodes).

Other viewing and editing agents provide different views of the data – through

web interfaces, graph networks, or specialized meeting views for presenting the

agenda items or commitments. All of these are updated as information gets added

to the semantic network. Meeting attendees can decide to bring up their own per-

son view of the meeting state, so that they can augment and add the meeting in-

formation with more information than the meeting recorder was able to provide.

The network itself stores a variety of node and link types for the meeting,

including meetings, multimedia recordings, documents, people, issues, commit-

ments, and other discourse items. Most of these types actually have very little

information attached to each of them, as the semantic network relies more on the

links between nodes to define the relationships. For example,

• a person can act as an author of a document, an attendee of a meeting, a fa-

cilitator for a meeting, or an owner (sometimes considered the “raiser”) of a

discourse item;

• discussion points can be raised as a supporting argument, a dissenting argu-

ment, or even as an implication to a preceding discussion;

• discourse items can be marked as agenda nodes so that they can be used to

organize meeting flow.
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Figure 6-12: The MeetingManager’s Gui.

The endpoints for the links are not limited to the storage nodes; links can also

be created to other links. This allows more complex interactions in the data model,

so that a person can augment a supporting argument with a node describing his

own agreement. We use this ability to augment links extensively to register that

a link was created during a meeting, so that we can later request information on

any discussion points raised at a certain time, and link those points to the meeting

video.

With many discussion points being raised during a meeting, these networks

can grow to be fairly complex, as seen in Figures 6-13 and 6-14.

When the meeting is over, the network makes it possible to delve into the struc-

ture and answer many questions about the meeting, among them:

• “What members of the AIRE group did not attend the meeting?”
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Figure 6-13: The complexity of a discourse structure captured during a typical
“brainstorming” meeting. People are represented by ovals, discourse items by
rectangles. Different relationships are represented in different colors. A closeup of
this is in Figure 6-14.

• “What open commitments are assigned to me?”

• “What issues were raised in opposition to this discussion point?”

• “What points did Krzysztof raise?”

• “Show me the video for this discussion point.”

The last example works by coordinating the timestamp for the discussion points

with that of the meeting video, so that it can skip forward to the appropriate po-

sition during the video playback. By linking together multiple meetings, it is also

possible to make these queries about the meeting history, and retrieve the archived

footage from previous discussions, allowing for a quick recap of the important

events.
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Figure 6-14: Closeup of Figure 6-13. The links from users to discourse items specify
the “owner” of each discussion point, whereas links between discourse items are
discourse links.
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Chapter 7

Evaluation

Recall the design criteria referenced in Chapter 1.1:

• Respect people’s right to control their own resources, by ensuring that re-

sources are controlled only by the resource’s owner(s), and can enable restric-

tions on the resources as they see fit.

• Respect people’s privacy, by limiting access to private information (such as

a person’s location), and only allowing such information to be retrieved from

the outside by querying data sources controlled by the person in question.

• Adapt to changing conditions, so that the environment can adjust its actions

dependent on what situation a user finds himself in, and

• Be sensitive to individual preferences, such that different people can guide

the system in different ways based on their own personal needs.

How well does the system we have architected handle these constraints? Let

us describe fully how the entire system handles the donut scenario:

• There are several societies in the system. In particular, there are societies for

Max, the lounge, and Max’s workgroup (which we shall call “AIRE”).

• The lounge’s semantic network contains a list of the groups that are associ-

ated with it, including the “AIRE” workgroup.
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• Ellie uses the lounge’s kiosk to send an announcement message to the locally

associated workgroups. This announcement message has a few parameters

because of the nature of a “free food” broadcast – it is important that the

message be delivered quickly (because can disappear fast), but it is not an

urgent message (so no guarantees of delivery need to be performed). As

such, the message is tagged with parameters of “high timeliness” and “low

urgency.”

• The agent in the kiosk society which receives the request decides to perform

a multicast to all associated workgroups, passing on the message and the

same delivery parameters. As such, it looks up the list of groups that are

associated, and requests an announcement service for each one. Each request

is handled in the same way, but we shall here examine only the request being

sent to the AIRE society.

• Because the request is for a foreign service, the request is forwarded to the

ambassador for the lounge society. The lounge’s ambassador notes that the

request is being sent to the AIRE society, so it consults the Hyperglue Entity

Directory, and requests a handle to the ambassador for AIRE.

• Once the lounge’s ambassador receives a handle for AIRE, it passes on the

request for an announcement service to it.

• The AIRE society is a group society (Section 4.6), and as such often passes

on messages to members of the group. However, it does have two means of

handling announcements to the group:

– A local announcer, which will try to locate and use area-wide message

boards or scrolling displays to pass on announcements and news items.

Because people only really look at it when they’re passing by, this ser-

vice has parameters of low timeliness and low urgency.

– A multicast announcer, which will re-send the announcement individu-

ally to each member of the group. This service is considered to have a
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high timeliness factor, since it will tend to be received faster.

• The ambassador forwards the service request on to the AIRE service mapper.

Because the incoming announcement message has a high timeliness factor,

the service mapping engine in the AIRE society evaluates the multicast an-

nouncer as having a better utility, and thus returns it.

• The ambassador for AIRE will then pass a proxy to the multicast announcer

service back to the agent in the lounge society. The agent in the lounge so-

ciety can then use this proxy to call the AIRE announcer with the message

attached.

• The multicast announcer in AIRE receives the message request, and performs

its function – looking up the list of users in AIRE, and forwarding the mes-

sage on to each user’s preferred announcement service. As such, it looks up

the list of users that are members of the group, and requests an announce-

ment service for each one. Each request is handled in the same way, but we

shall here examine only the request being sent to Max.

• Because this request is for a foreign service, the request is forwarded to the

ambassador for AIRE. Because the AIRE society ambassador notes that the

request is being sent to Max, so it consults the Hyperglue Entity Directory,

and requests a handle to the ambassador for Max.

• Once the AIRE ambassador receives a handle for Max’s ambassador, it passes

on the request for an announcement service to it.

• Max’s society contains several means of sending out announcements:

– An SMS-based service, which will use an email-sending resource to de-

liver a text message to Max’s cell phone. Since Max always has his

phone with him, this service has a high timeliness and high urgency.

– An email service, which will use the same email-sending resource to de-

liver a text message to Max’s email inbox. Max doesn’t check his email
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very often, so he gives this service a low timeliness parameter. It does,

however, have high urgency, because he tends not to lose email very

often.

– A display service, which will coordinate with the local environment at

Max’s location and try to display a message there. Max usually notices

these messages, but doesn’t like important information to be sent there.

Therefore, he has marked this service as providing high timeliness, but

low urgency.

• Max’s current context contains information that he is currently not at his

desk. His contextualized preferences are stated such that if he is currently at

his desk, he prefers urgency over timeliness, but when he is away, he prefers

timeliness over urgency.

• Max’s preferences in this situation are turned into a utility function, and each

of the services are evaluated. The SMS-based service is evaluated as return-

ing the highest net benefit. As such, a proxy for that service is returned to the

AIRE society.

• The AIRE society’s announcment service then uses the proxy to pass the mes-

sage on to Max’s SMS-service.

• The SMS service requests the email delivery resource, uses Max’s local se-

mantic network to get the email account that it should send the message to,

and then uses this information and the resource to pass the message on to

Max’s phone via the email resource.

• Everything after this is up to Max. He gets the message on his phone, reads

it, and then goes to grab food.

How well does this system handle the different design criteria?
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7.1 Respect Privacy

This system respects privacy by carefully compartmenting the information. All

information for a society (Max’s location, his telephone access number, his prefer-

ences, the list of groups associated with the lounge, the list of members in AIRE),

is stored in local semantic network storage, and thus is not leaked out to the

wider world. Although external societies could request this information, deciding

whether or not to respond is done by agents under the control of the information

holder.

7.2 Ownership Rights

Decisions to use resources are made by the resource’s owner – for example, Max’s

email delivery resource is only accessible to the local society, so it cannot be grabbed

or misused by external societies without permission. Max (or agents operating on

his behalf) also gets to decide precisely how messages get delivered – the send-

ing agent can try to make requests, but the final decision is up to Max’s society of

agents.

7.3 Changing Conditions

The contextual parameters of the situation guide which set of preferences are used

in the service mapping engine. When Max is in a different location, the contextual

situation changes as well, and thus a different set of preferences are called into

play. With different preferences comes a different set of rules, and potentially a

different service.
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7.4 Individualized Preferences

Unsurprisingly, the system handles this well, since it exists directly as one of the

four pillars of infrastructure. Preferences are stored locally, and used to guide the

selection of the most appropriate service for any task.

7.5 Summary

In sum, the system as designed does in fact satisfy the design goals.
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Chapter 8

Future Work

As no research project is ever completed, most of the different components of this

work present opportunities for further examination. In the following sections, I

will briefly outline several possible areas for improvement or analysis.

8.1 Access Control

The design of Hyperglue, focusing as it does on individual control over resources,

lends itself well to a design that provides for access control that is easily defined

by the individual as well. By segmenting resources along a broad notion of “own-

ership,” the society of agents that provide access to the resources can exert an in-

fluence over who can use them.

For example, a conference room’s staff may wish the room to enforce that pro-

jectors are only controllable by the person currently signed up to use the room. A

simple access control to satisfy this condition would be for the Ambassador to only

release plans for devices to societies that represent said person.

However, more complex schemes can be envisioned, often related to the current

contextual situation. When no one is signed up to use the conference room, do the

projectors default to public access, or are they locked down to protect the bulbs

from wear?

Also, are there others who can override the usage requirements? Although in
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this thesis we suggest that the “owner” of a resource is usually limited to the per-

son or space that has the most direct control over it, in reality the situation is more

fluid. A computer in an academic group is in some sense “owned” by the person

who uses it on a daily basis, but in other senses might be considered owned by the

group’s director, the lab that the computer is part of, the academic department, or

whatever external organization provided the funding to purchase the equipment.

Not all of these will want to have control over the machine’s day-to-day use, but

there are certainly times when the group’s director will want to take over the ma-

chine for a processing task – or even ask that it be made available for use by other

people in the group. Defining what people are “allied” with the resource is highly

dependent on the task being performed and the requestor, and there need to be

more flexible means of specifying the rules and enabling this functionality.

One other difficulty with Hyperglue is the need to limit access based on the

plan’s requirements. In Java, once you have a handle to a resource through a re-

mote object, you can call any method on it, not just those related to the current

plan. A better access control system would be able to leverage Metaglue’s proxy

handlers to limit access on the level of individual methods, thus confining external

socities to pre-approved interactions with the local resources.

Design work on both role-based access and method-level control in Hyperglue

has been started by Buddhika Kottahachchi [18] as part of his master’s thesis. De-

signing more context-based methods such as those described above would be fu-

ture work, potentially based on the Kottahachchi design.

8.2 Plan Monitoring

The plan model currently adopted for Hyperglue provides a series of steps that

will accomplish the intended goal. However, it eschews an important piece – mon-

itoring of the plan’s execution to record the steps being taken and determine that

it is proceeding correctly, and to signal the system that the plan has been followed

to completion. In some higher-order plans, it may even be necessary to request

132



that the user perform a step of the plan (such as switching on a device that is not

available through computer control), and wait for the user to respond.

In addition, plan monitoring should determine whether the plan has been exe-

cuted satisfactorily, perhaps by examining the device state to see if the parameters

are within expected boundary conditions. If this is not the case, then control should

be passed to a diagnosis and recovery unit to remedy the situation, and potentially

to develop a new plan for correcting or completing the task.

Some of this information is handled through the Planlet[16] system, although

a good direction for future work would include the implementation of a model-

based diganosis and recovery system which can take advantage of the plan repre-

sentations to determine a proper way of recovering from errors.

8.3 Reactive Event Processing

The design presented in this thesis is based solely around a request architecture –

a society makes a service request, which will eventually generate a specific set of

steps to go through in fulfilling that request. This setup works well for human-

controlled actions, where a person makes an affirmative request and receives a

response in turn. However, it works less well for more implicit actions – ones that

are initiated by the environment itself, usually through some kind of external stim-

uli such as someone entering a room. The problem with any such implicit action is

that an automated action that is correct under some conditions is often wrong un-

der others. For example, turning on soft music when the lights are dimmed might

be quite pleasant when someone is trying to relax, but is rather a poor outcome

when the lights have been dimmed because a movie is being viewed.

A few years ago, Ajay Kulkarni[20] described a design for a context-dependent

IE, which would model the environment’s current state according to its activity

context – that is, the ongoing task – and describing a set of behaviors for the envi-

ronment based on that context, which determine how the IE will react to external

stimuli. For example, the system might determine that a person entering an empty
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room should cause the lights to turn on, but a person entering a room where a pre-

sentation is being given should cause no such change in light level. Behaviors were

modules that could be inherited (so that a “Presentation” behavior might inherit

from a more generic “Meeting” behavior).

One possible extension to Hyperglue is to provide support and integration for

this kind of event-based reactive processing, and integrate it so that it includes

support using the existing contextual information in the semantic network.

8.4 Language Independence

One of the problems with Hyperglue now is that it is highly dependent on a

Java-centric view of the world; all agents are written in Java, the communication

model is based on the Java-specific RMI framework, and we use RMI to perform

method calls as well. Because Hyperglue effectively insulates the different societies

from each other, however, it should be possible to use a separate, more language-

agnostic communication structure for inter-societal communication. This would

have several benefits, most notably plug-and-play interactions with other agent

and software systems. This would also allow a closer interaction with applications

that provide interaction APIs in other languages (for example, many off-the-shelf

applications allow control through plug-ins that can be written in C, but don’t pro-

vide a Java implementation).

To implement this, it is necessary to strictly define the kinds of interaction

that will be allowed (essentially, societal registration in the HED, and the Am-

bassador interface), and to modify the Ambassadors to use an agnostic commu-

nication protocol for communication, such as the World Wide Web Consortium’s

SOAP. Strictly defining the layout of plan objects will also be necessary. Services

that provide resources will of course need to be modified to use the agnostic pro-

tocol, but the Ambassador could be tasked to set up proxies that handle the trans-

lation between the external protocol and whatever communication is used within

the society.
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A further extension could be completely separating the external communica-

tion from any specific protocol; instead, when an external society opens a connec-

tion to the Ambassador, it also provides a set of protocols that it can use for com-

munication, and the two societies can then negotiate to determine the best protocol

for communication.

8.5 O2S Integration

Similar to creating a language-independent basis for Hyperglue is helping to adapt

some of Hyperglue’s concepts to other systems. One such system is O2S[32], an-

other project attempting to create infrastructures for distributed systems, focusing

on goal-oriented planning and stream-oriented data processing. As such, it has its

own design for service mapping architectures, which has proven to be a utilitarian

system in tests.

Like the service mapping component of Hyperglue, the goal system of O2S di-

vorces the actual execution of the code from the choice of the best means to service

a request. It also builds up a full goal tree and explores it, similar to the fully

hierarchical version of the task planner seen in our Section 5.4.2.

One piece of the picture that O2S does not address, however, is how to deal

with the larger world. Specifically, it does not have a service discovery system

meant to scale to the larger world. In this respect, the society-based model behind

Hyperglue can be used to augment the O2S design and allow it to scale to a larger

world. Work along these lines may commence soon in a project associated with

the T-Party project at MIT’s CSAIL.

8.6 Miscellaneous Improvements to Hyperglue

Since the semantic network has become a fairly well-used component within the

AIRE group, there are several ongoing projects to try to extend or improve that

work. Graduate students Buddhika Kottachchi and Andy Perelson recently en-
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gaged in a research project to speed up the network’s operation, concentrating

mostly on providing a separate table to handle the class identifiers and using it to

hasten the queries. For the work on OK-net[17], Max van Kleek developed an on-

tology generation language called OntoGen that makes it easier to develop a set of

classes for the network based on simple descriptions of types and property values.

Finding efficient methods for distributing the network ala distributed database

systems are also a useful research direction.

The service mapping component leaves one important facet untouched – time.

Specifically, in long-lived IEs, agents seem to develop a tendency to request a re-

source and then not releasing it when it’s not needed, either because they’ve de-

veloped an error and aren’t properly handling the condition, or simply through

programmer laziness. In addition, devices can malfunction and cause a control-

ling agent to enter a long-lived wait state.

Because of these issues, it’s necessary for the resource management and ser-

vice mapping components to mandate expiration times, after which the resource

being used will be assumed to be available for reallocation. Such a design also

enables resources to be briefly yanked away from an existing process for a short-

term loan to another application. For example, while a movie is playing, an agent

may wish to briefly control the speakers of the room to inform the occupants of an

emergency. The room’s resource manager could briefly wrest control of the audio

from the movie-playing agents, and then return it when the announcement is com-

pleted, without informing the movie agents that they may wish to send the audio

to another channel.

The current design for plans uses a simple structure that merely encodes ser-

vice requests and methods to call on the returned services. A more flexible struc-

ture would use Planlet[16], a middleware layer that represents plans and progress

through them during execution. Planlet also allows plans to be defined hierarchi-

cally and for plans to be modified as they are being carried out. These two features

allow plans to be reused by other plans and also allow for steps to be “late-bound”

to a plan, if it is beneficial to defer the choice of a specific plan of action until exe-
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cution time.

Hyperglue’s current design for the HED is fairly simplistic, and we need to

evaluate designs that scale better to very large national or global hierarchies of

societies. Hyperglue also requires more testing in real-world settings, since most

of the work on it has been in small test environments. Part of this is the migration

of existing applications to the Hyperglue design; although this is actually a simple

operation (usually just ensuring that an agent will start in a spatial society rather

than a user society), it sometimes requires an analysis of the existing application’s

design to yield the best fit.
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Chapter 9

Related Work

Although other systems have been built with the intention of exploring the inter-

action of humans and intelligent environments, few have attempted to do so with

the intent of resolving the design criteria described in this thesis. Here we present

a brief survey of related work in the field of intelligent environments.

9.1 Interactive Workspaces

The Interactive Workspaces group at Stanford is well-known for developing iCraf-

ter [36] and related systems for handling interactions in a single intelligent space.

Their infrastructure, however, is very much geared towards a single environment

– usually a shared workspace outfitted with large displays and other display re-

sources. Although they perform interactions with more user-centered items such

as laptops and PDAs, thjeir model is focused on the room, and not on the users

controlling the devices. As such, notions of a user’s rights or privacy are not ex-

plicitly handled.

9.2 OAA

The Open Agent Architecture [25], one of the more venerable agent systems avail-

able, is designed specifically for agent-based interactions. Within OAA, all com-
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munication is funneled through a central agent called the facilitator, which acts as

a coordinator for cooperative problem-solving. Agents register their capabilities

with this central agent, and make requests in the form of “tasks,” which the facil-

itator can break down into subtasks and farm them out to client agents that can

perform the required actions. OAA itself, however, does not have special facilities

for performing resource reservation or for arbitrating service requests.

9.3 Smart Classroom and SmartPlatform

The SmartPlatform infrastructure is currently being used by the Smart Classroom

project [45, 46]. This project originally was based on OAA, but recently moved to a

new approach, featuring a hybrid communication scheme: short messages are sent

through a central broker (the “DS”, or directory service) using a publish/subscribe

mechanism, but peer-to-peer connections can be created when higher bandwidth

requirements are necessary. SmartPlatform itself does not contain facilities for han-

dling or processing resource conflicts, and is beginning to work on gateways to

other agent systems (such as Metaglue, described below), to help address some

scalability issues.

The infrastructure is used as the basis of the Smart Classroom project, enabling

tools for coordination of both remote and local students in relation to a single

teacher. However, the system is not designed to handle more than one centrally

located classroom; all resources are either local or communicate solely with the

central location.

9.4 EasyLiving

The EasyLiving project [7] at Microsoft used a distributed programming environ-

ment with a handful of agents acting to manage a single environment. Although

they made strides in exploring and modelling user interactions within a smart

room, and building reactive behaviors into the space, there does not seem to be an
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attempt made to move beyond a single-environment model in their system.

9.5 Other Multi-Agent Systems in Intelligent Environ-

ments

There are other multi-agent systems that have been employed for intelligent envi-

ronments, but these systems are often so specialized that they don’t have specific

notions of users at all.

The IHome project at UMass [23, 22] was a simulated agent architectures for

intelligent environmental control, emphasizing resource coordination. High-level

agents were capable of recognizing resource conflicts, and prioritizing allocations

according to the user’s preferences. IHome’s agents, however, are designed to

work with one space, and there does not seem to have an easy way of coordinating

operations across multiple environments or users, making it inadequate as a more

generalized system.

one.world [12] is a system architecture developed at the University of Wash-

ington, designed to provide programmers with services for writing pervasive ap-

plications. The distributed components use remote event passing for communica-

tions, and perform discovery operations to locate resources for the components.

The discovery server is centralized, but is elected in an ad-hoc manner from all

the participating nodes, with the elections waited to favor candidates with the best

response times. Once an election has taken place, all the nodes pass service infor-

mation into the discovery server, and use this single point for most communication

handling. one.world includes support for low-level resource allocation, but does

not appear to have a generic way for modeling higher-level resources or handling

conflicts. Because all components are also sharing the discovery server, there is a

requirement for participating components to share information so that they can be

discovered properly.
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Chapter 10

Summary and Conclusion

I have shown that a system based on the four pillars:

1. Agent communications and structures that mirror the social and physical in-

teractions they represent. See Chapter 4.

2. A collection of user preferences, mapped into utility functions, being used to

fuel the environment’s decisions about service mapping and resource man-

agement. This was described in Chapter 5.

3. An “awareness” of the state of the world, which can be used to further drive

context-based preference decisions. Context-based preferences were further

explored in Section 5.1.6.

4. A semantic memory that defines and describes the resource and preference

requirements. The semantic network used to build this was described in

Chapter 6.

will effectively serve in creating a system that will respect privacy, respect peo-

ple’s rights to control their own resources, adapt to changing environmental con-

ditions, and handle individual preferences.

In order to show this, I have designed and built an augmented agent infrastruc-

ture for intelligent environments, called Hyperglue, based on this infrastructure.
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During the design phase for these components, a focus was placed on creating in-

frastructure that serves the overall goal of building agents that can easily be assem-

bled and added to a working system. This was one of Metaglue’s most enduring

design features, and impacting it as little as possible was a necessity.

To achieve this, I created subsystems that attempted to maximize a number of

attributes. Perhaps foremost amongst these was flexibility, since the design needed

to be easily extended beyond a handful of simple scenarios. This drove the cre-

ation of a knowledge representation that could be easily utilized and extended by

the creation of new Java classes, and in turn a context model that could be easily

adapted to new contextual cues.

I also created a model for agent societies that carefully preserves individual

ownership and control, developing a hierarchy that attempts to model the same

interactions we use in the real world. This achieves several purposes, including

simplicity of communication and easier modeling of complex interactions by using

abstraction barriers that hide the details of the individual societies.

Finally, I included a system for using a user’s preferences to drive the selection

of resources. This enhances flexibility, and provides a clean model for the user to

specify desired behavior without becoming overly complex.
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Appendix A

Scheme Code for Service Mapping

A.1 Code for Utility Function Generation
;;; -*- Mode: Scheme; Syntax: Kawa -*-

;;; A Node space is a mapping of feature sets onto numerically ordered
;;; nodes The original version of this used binary features exclusively,
;;; this is a redesign for features that take on 1 of n values (e.g.
;;; speed in {fast medium slow}). Each feature is assigned a byte of
;;; enough bits to cover the number of possible values and then the
;;; values are assigned values from 1 to n within that space. The total
;;; feature vector is then the concatenation of these individual bytes.
;;;
;;; The node space has these components:
;;; The alist of features and their possible values
;;;
;;; The forward-map: A hash-table mapping feature-name to a byte-specifier
;;; for that feature and the list of values in order
;;;
;;; An inverse-map for mapping the numerical encoding to feature and value
;;; the inverse-map is an set of triples
;;; byte-specifier feature-name feature-values
;;;
;;; A vector of nodes, each corresponding to an element of the powerset
;;; of individual feature assignments.

;;; For example: if size is the second feature in bits 2 - 3
;;; encoding values large, medium small
;;; then large = #o0100 -> 8
;;; medium = #o1000 -> 16
;;; small = #o1100 -> 24

;;; note that the 00 case means no value, so the byte is always large
;;; enough to hold the number of values + 1.

;;; programming notes:
;;; (ldb (byte size position) number)
;;; (dpb newbyte (byte size position) number)
;;; are the common lisp ways of accesses bit-fields
;;; size and position are in bits

;;; Translations of defclasses

(require ’list-lib)

(define (nth i lst) (list-ref lst i))
(define (pushnew el lst) (if (member el lst) lst (cons el lst)))
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(define-record-type netnode (make-netnode number outgoing incoming value)
netnode?
(number netnode-number)
(outgoing netnode-outgoing set-outgoing!)
(incoming netnode-incoming set-incoming!)
(value netnode-value set-node-value!))

(define-record-type netlink (make-netlink incoming outgoing weight) netlink?
(incoming netlink-incoming)
(outgoing netlink-outgoing)
(weight netlink-weight))

(define-record-type nodespace (make-nodespace fw-map inv-map node-vec feat)
nodespace?

(fw-map nodespace-forward-map)
(inv-map nodespace-inverse-map)
(node-vec nodespace-node-vector)
(feat nodespace-features-list))

(define-record-type byte-specifier (make-byte-spec pos bits) byte-specifier?
(pos byte-spec-position)
(bits byte-spec-length))

(define (byte-spec-start lst) (byte-spec-position lst))
(define (byte-spec-end lst) (+ (byte-spec-position lst) (byte-spec-length lst)))

(define (make-hash-table) (make <java.util.HashMap>))
(define (ht-get key ht)

(let ((value (invoke (as <java.util.HashMap> ht) ’get key)))
(if (eq? value #!null) #f value)))

(define (ht-set! key value ht)
(invoke (as <java.util.HashMap> ht) ’put key value))

;;; here the feature set is a set of (feature . values)
(define (make-node-space feature-set)

(let ((forward-map (make-hash-table))
(byte-position 0)
(inverse-map ’() ))

(let ((mns-help (lambda (feature-name . feature-values)
(let* ((number-of-bits (integer-length

(+ 1 (length feature-values))))
(byte-specifier

(make-byte-spec byte-position number-of-bits)))
(set! inverse-map

(cons (list byte-specifier feature-name
feature-values)

inverse-map))
(ht-set! feature-name

(list byte-specifier feature-values)
forward-map)

(set! byte-position
(+ byte-position number-of-bits))))))

(for-each (lambda (f) (apply mns-help f)) feature-set)

(let* ((network-size (arithmetic-shift 1 byte-position))
(node-vector (make-array (shape 0 network-size))))

(let loop ((i (- network-size 1)))
(if (>= i 0)

(let ((entry (make-netnode i ’() ’() #f)))
(array-set! node-vector i entry)
(loop (- i 1)))))

(make-nodespace forward-map inverse-map node-vector feature-set)))))

;;; reminder:
;;; the inverse-map is an set of triples
;;; byte-specifier feature-name feature-values
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(define (decode-node node ns)
(let ((inverse-map (nodespace-inverse-map ns))

(number (netnode-number node)))
(filter (lambda (x) x)

(map (lambda (ent)
(let* ((byte-spec (first ent))

(feature-name (second ent))
(feature-values (third ent))
(feature-number

(bit-extract number
(byte-spec-start byte-spec)
(byte-spec-end byte-spec))))

(if (and (> feature-number 0)
(<= feature-number (length feature-values)))

(list feature-name
(nth (- feature-number 1) feature-values))

#f)))
inverse-map))))

(define (deconstruct-nodespace ns)
(let ((nv (nodespace-node-vector ns)))

(list (nodespace-forward-map ns) (nodespace-inverse-map ns)
(map (lambda (n) (decode-node n ns))

(let lp ((i (array-start nv 0)))
(if (>= i (array-end nv 0)) ’()

(cons (array-ref nv i) (lp (+ 1 i))))))
(nodespace-features-list ns))))

;;; Given a set of feature-name feature-value pairs find the designated
;;; node

(define (dpb newbyte byte-spec integer)
(let* ((start (byte-spec-start byte-spec))

(end (byte-spec-end byte-spec))
(lo (bit-extract integer 0 start))
(hi (bit-extract integer end (integer-length integer))))

(logior (arithmetic-shift hi end)
(logior (arithmetic-shift newbyte start)

lo))))

(define (find-feature-set-node feature-set ns)
(let ((node-vector (nodespace-node-vector ns))

(key 0))
(for-each (lambda (ent)

(let ((feature-name (nth 0 ent))
(feature-value (nth 1 ent)))

(let-values (((byte-spec feature-value-number)
(map-feature-name-and-value

feature-name
feature-value
ns)))

(set! key (dpb feature-value-number
byte-spec
key)))))

feature-set)
(array-ref node-vector key)))

(define (index-of tst lst)
(cond ((null? lst) ’())

((eq? tst (car lst)) 0)
(else (let ((res (index-of tst (cdr lst))))

(if (null? res) res (+ 1 res))))))

(define (map-feature-name-and-value feature-name feature-value ns)
(let ((forward-map (nodespace-forward-map ns)))

(let* ((feature-entry (or (ht-get feature-name forward-map)
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(error "Invalid feature-name ˜a" feature-name)))
(byte-spec (nth 0 feature-entry))
(feature-values (nth 1 feature-entry))
(value-number (or (index-of feature-value feature-values)

(error "Invalid value ˜a for feature ˜a"
feature-value feature-name))))

(values byte-spec (+ 1 value-number)))))

;;; find all nodes matching a description and apply a function to
;;; each. a description is a list of literals each literal is a list
;;; of feature-name and a specific-feature-value
;;;
;;; variable features are the feature-names for which we don’t care
;;; what value they take on, we find
;;; all nodes with any value for this feature-name

(define (find-feature-set-nodes feature-set variable-features ns continuation)
(let ((fixed-key 0))

(for-each (lambda (ent)
(let ((feature-name (nth 0 ent))

(feature-value (nth 1 ent)))
(let-values

(((byte-specifier feature-value-number)
(map-feature-name-and-value feature-name

feature-value ns)))
(set! fixed-key (dpb feature-value-number

byte-specifier
fixed-key)))))

feature-set)

(let do-one-more-dont-care ((remaining-features variable-features)
(key-so-far fixed-key)
(accumulated-dont-cares ’()))

(if (null? remaining-features)
(continuation (array-ref (nodespace-node-vector ns) key-so-far)

accumulated-dont-cares)
(let ((next-feature-name (car remaining-features))

(remaining-features (cdr remaining-features)))
(let* ((feature-entry

(or (ht-get next-feature-name (nodespace-forward-map ns))
(error "Invalid feature-name ˜a" next-feature-name)))

(byte-specifier (first feature-entry))
(feature-values (second feature-entry)))

(let lp ((feature-value (car feature-values))
(feature-values (cdr feature-values))
(i 1))

(do-one-more-dont-care remaining-features
(dpb i byte-specifier key-so-far)
‘((,next-feature-name ,feature-value)

,@accumulated-dont-cares))
(if (not (null? feature-values))

(lp (car feature-values) (cdr feature-values)
(+ 1 i))))))))))

;;; This is used by canonicalize-rule below to combine the negative of
;;; the lhs of a rule with the rhs of the rule and vice-versa. By
;;; negative we mean all possible features other than the one actually
;;; specified e.g. if the right hand side say (quality low) then we
;;; need to add to the left hand side (quality high) and (quality
;;; medium)

;;; so if we have (speed fast) > (quality low)
;;; where speed takes on values fast slow
;;; and quality takes on values high medium low
;;; then what we mean is
;;; (speed fast) & (quality high) > (speed slow) & (quality low)
;;; (speed fast) & (quality medium) > (speed slow) & (quality low)
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(define (distribute and-term and-term-to-negate ns)
(let ((answers ’() ))

(let do-all-remaining-dont-cares ((dont-care-terms and-term-to-negate)
(stuff-so-far and-term))

(if (null? dont-care-terms)
(set! answers (pushnew stuff-so-far answers))
(let ((feature-name (car (car dont-care-terms)))

(feature-value (cadr (car dont-care-terms)))
(dont-care-terms (cdr dont-care-terms)))

(let ((feature-values (cdr (assoc feature-name
(nodespace-features-list ns)))))

(for-each (lambda (value)
(unless (eq? value feature-value)

(let* ((new-term (list feature-name value))
(accumulated-stuff

(if (member new-term stuff-so-far)
stuff-so-far
(cons new-term stuff-so-far))))

(do-all-remaining-dont-cares
dont-care-terms accumulated-stuff))))

feature-values)))))
answers))

; Take a rule and turn it into a canonical form.

(define (canonicalize-rule lhs rhs ns)
(let ((completed-left (distribute lhs rhs ns))

(completed-right (distribute rhs lhs ns))
(answers ’()))

(for-each (lambda (l)
(for-each (lambda (r)

(let ((ent (list l r)))
(set! answers (pushnew ent answers))))

completed-right))
completed-left)

answers))

;(canonicalize-rule ’((speed fast)) ’((quality low)) ns)
;(canonicalize-rule ’((speed fast)) ’((speed slow)) ns)

(define (process-a-rule better-features worse-features weight ns)
(let ((used-terms ’()) (dont-cares ’()) (used-features ’()))

(define (do-symbols-in-thing conjunction)
(for-each (lambda (term)

(set! used-terms (pushnew term used-terms))
(set! used-features (pushnew (car term) used-features)))

conjunction))

(do-symbols-in-thing better-features)
(do-symbols-in-thing worse-features)
(set! dont-cares (lset-difference equal?

(map car (nodespace-features-list ns))
used-features))

(define (dominate-nodes better worse)
(find-feature-set-nodes

better dont-cares ns
(lambda (better-node accumulated-dont-cares)

(find-feature-set-nodes
(append accumulated-dont-cares worse) ’() ns
(lambda (worse-node ignored)

(let ((link (make-netlink better-node worse-node weight)))
(set-outgoing! better-node

(pushnew link (netnode-outgoing better-node)))
(set-incoming! worse-node

(pushnew link (netnode-incoming worse-node)))))))))
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(let ((pairs (canonicalize-rule better-features worse-features ns)))
(for-each (lambda (p)

(let ((better (first p))
(worse (second p)))

(dominate-nodes better worse)))
pairs))))

(define (process-all-rules rules feature-set)
(let ((node-space (make-node-space feature-set)))

(for-each (lambda (rule)
(let ((lhs (first rule))

(rhs (second rule)) (weight (third rule)))
(process-a-rule lhs rhs weight node-space)))

rules)
(assign-order node-space)
node-space))

(define (assign-order node-space)
(let ((node-vector (nodespace-node-vector node-space)))

(define (do-one-node node path-so-far)

(when (member node path-so-far)
(error "Cycle ˜{˜%˜a˜ˆ,˜}"

(map (lambda (bad-node) (decode-node bad-node node-space))
(cons node path-so-far) )))

(unless (netnode-value node)
(let* ((best-of-descendants

(let ((maxval 0))
(for-each (lambda (outgoing-link)

(let* ((descendant
(netlink-outgoing outgoing-link))

(weight
(netlink-weight outgoing-link)))

(do-one-node descendant
(cons node path-so-far))

(let ((w (* weight
(netnode-value descendant))))

(if (> w maxval) (set! maxval w)))))
(netnode-outgoing node))

maxval))

;; if there are no outgoing links the value is 1
(my-value (if (zero? best-of-descendants) 1

best-of-descendants)))
(set-node-value! node my-value))))

(let looper ((i (array-start node-vector 0)))
(if (< i (array-end node-vector 0))

(begin (do-one-node (array-ref node-vector i) ’())
(looper (+ 1 i)))))))

(define (utility feature-set node-space)
(let ((node (find-feature-set-node feature-set node-space)))

(netnode-value node)))

(define (convert-surface-rule constraint)
(display (list ’c-s-r constraint))
(let ((pos (list-index list? constraint)))

(let ((lhs (take constraint pos))
(rhs (drop constraint (+ 1 pos)))
(weight (second (nth pos constraint))))

(define (group-it plist)
(cond ((null? plist) ’())

(else (cons (list (first plist) (second plist))
(group-it (cddr plist))))))

(list (group-it lhs) (group-it rhs) weight))))
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(define (make-utility-function feature-set preferences)
(let ((constraints (map convert-surface-rule preferences)))

(let ((his-ns (process-all-rules constraints feature-set)))
(lambda (features) (utility features his-ns)))))

(define-syntax defpreference
(syntax-rules ()

((defpreference name constraint)
(define name (convert-surface-rule (quote constraint))))))

;;;;; Testing

(define my-ns #f)
(define util-func1

(make-utility-function
’((speed fast slow) (quality high medium low) (privacy private public))
’((speed fast (>> 2) speed slow)

(quality high (>> 2) quality medium)
(quality medium (>> 2) quality low)
(privacy private (>> 2) privacy public)
(speed fast (>> 2) privacy private)
(quality medium speed fast (>> 2) privacy private)
(privacy private speed fast (>> 2) quality low))))

;(util-func1 ’((speed fast) (quality high) (privacy private)))

A.2 Additional Functions for Utility Bounds Calcula-
tions

;;; Utility Bounds function. This is essentially performing the same
;;; job as the earlier utility function, except we pass it a
;;; continuation that will properly calculate the maximum and minimum
;;; values.

(define (utility-bounds bound-features unbound-features node-space)
(let ((min nil)

(max nil))
(find-feature-set-nodes

bound-features unbound-features node-space
(lambda (node ignored)

(let ((node-val (netnode-value node)))
(when (or (null? min) (< node-value min))

(set! min node-val))
(when (or (null? max) (> node-value max))

(set! max node-val)))))
(cons min max)))

;;; Note that the bounds version of the resultant utility function
;;; doesn’t just take the features as an argument; it needs to take
;;; both the bound and unbound features. The front-end that calls
;;; this needs to take that into account.

(define (make-utility-bounds-function feature-set preferences)
(let ((constraints (map convert-surface-rule preferences)))

(let ((his-ns (process-all-rules constraints feature-set)))
(lambda (bound-features unbound-features)

(let ((result (utility-bounds bound-features unbound-features his-ns)))
(cons min max)))))
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A.3 Hierarchical Task Planning

This code utilizes a framework for performing Prolog-style logic programming.
An implementation of this framework can be found in Appendix B.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;
;;; Find Best Method for Service
;;;
;;; This finds the best method taking into account:
;;; * The benefit delivered
;;; * The cost of the resources
;;; * The possiblity that some resource isn’t working and could cause
;;; the method to fail
;;;
;;; The utility-function is supposed to be the type that returns [max
;;; min] bounds. This is always applied to the the top-level
;;; parameter alist since this is the value of the whole solution
;;;
;;; This builds a cutoff continuation that is used to cut-off a
;;; sub-tree exploration if it’s clearly worse than the best solution
;;; so far. This is equivalent to its (max utility - resource cost)
;;; incurred so far is worse than the best, conditioned by the
;;; probability of failure and failure cost for the top-level method
;;;
;;; It also builds a continuation for when a total solution is
;;; reached. This captures the best solution so far.
;;;
;;; The main recursion is a couple of functions below
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(define (find-best-method-for-service service-name utility-function
#!optional
feature-requirements other-parameters)

(let ((best-value nil)
(best-method nil)
(alist (make-alist-for-service service-name feature-requirements)))

(define (cutoff? top-method total-resource-cost joint-probability)
;; This returns #f if you should cutoff, #t if there’s a
;; chance this could be better
(or (null? best-value)

(let ((best-possible
(expected-net-benefit top-method total-resource-cost

joint-probability alist
utility-function)))

(or (null? best-value)
(> best-possible best-value)))))

(find-methods-for-service
service-name alist other-parameters
(lambda (total-resource-cost joint-probability method

resources sub-services)
(let ((tradeoff (expected-net-benefit method

total-resource-cost
joint-probability
alist utility-function)))

(when (or (null? best-value) (> tradeoff best-value))
(set! best-value tradeoff

best-method (list method resources sub-services)))))
cutoff?
0
1)

best-method))
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(define (make-alist-for-service service-name feature-requirements)
(let* ((features (get-service-features service-name)))

(map (lambda (feature)
(let ((requirement (assoc feature feature-requirements)))

(if requirement requirement
(list feature (make-unbound-logic-variable feature)))))
features)))

;;; The assumption is that the utility function returns max-value.
;;; The expected-cost-of-failure is the method’s cost of failure
;;; weighted by probability of failure, which is 1 - probability that
;;; all the resources work. "expected-utility" is the utility
;;; weighted by the probability that all the resources work your pay
;;; for the resources in all cases so it’s not weighted by probability

(define (expected-net-benefit method resource-cost
joint-resource-probability alist
utility-function)

(let* ((expect-failure-cost (* (- 1 joint-resource-probability)
(cost-of-failure method)))
(expected-utility (* joint-resource-probability

(utility-function alist))))
(- expected-utility resource-cost expect-failure-cost)))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;
;;; Find Methods for service does the hierarchical search
;;; It iterates for each top level method for the service (this is the or node):
;;; * fetchings the resources
;;; * binding the top-level parameters in alis
;;; * and fetching the service requirements (sub-goals)
;;; It then checks whether this solution can be ignored.
;;;
;;; The idea is that the utility function is a bounds function which
;;; will return a max utility over all unbound service-parameters and
;;; we can then calculate an expected-net-benefit on that as we pursue
;;; sub-services. The number of resources can only go up (increasing
;;; cost) and the number of bound-parameters can only go up,
;;; tightening bounding (decreasing max utility).
;;;
;;; Thus is expected-net-benefit is less than the best found so far,
;;; it isn’t worth pursuing this line (since we’re already worse and
;;; we can only get worse). It then iterates over the sub-services
;;; requirements (this is the and node), recursively calling itself
;;; for each. This iteration is done by recursion because each call
;;; is a generator that calls the continuation for each possible solution.
;;;
;;; For each complete solution (resources and sub-methods) it calls
;;; the continuation.
;;;
;;; The cutoff function is called with the method name, resource-cost,
;;; joint-probability. It has access to the utility function and the
;;; alist as captured closure variables, so it does little more than
;;; compute expected-net-benefit and threshold on that
;;;
;;; The continuation is called once for each solution with:
;;; * the cost-of-all-resources used by that method
;;; * the joint probability that the resources all work
;;; * the method name
;;; * the resources used directly by that method
;;; * the sub-services alist for this method (which is a set of
;;; triples -- one for each sub-service requirement including the
;;; method name, resources and sub-services)
;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(defun find-methods-for-service (service-name alist other-parameters
continuation
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evaluation-function
resource-cost-so-far
resource-probability-so-far
;; Top-method is null on the
;; top-level call but not at any
;; other time
#!optional top-method)

(unless other-parameters
(set! other-parameters ’?stuff)

(ask ‘[method-for ,service-name ,alist ?my-method ?my-resources
,other-parameters ?sub-services]

#’(lambda (bs)
(declare (ignore bs))
(labels

((do-next (cost-so-far probability-so-far
sub-services-left sub-services-done top-method)

(destructuring-bind (sub-service-name his-alist other-params)
(first sub-services-left)

(find-methods-for-service
sub-service-name his-alist other-params
#’(lambda (his-resource-cost his-probability

his-method-name his-resources his-sub-methods)
(setq sub-services-done (cons (list

his-method-name his-resources his-sub-methods)
sub-services-done)
sub-services-left (cdr sub-services-left))

(if (null sub-services-left)
;; then you’ve completed the goal tree

report the solution to caller
(funcall continuation his-resource-cost his-probability

?my-method ?my-resources sub-services-done)
;; more sub-goals, keep going
(do-next his-resource-cost his-probability

sub-services-left sub-services-done
top-method)))

evaluation-function
cost-so-far
probability-so-far
top-method))))
(loop for r in ?my-resources

for (value probability) = (is-working r)
unless value
do (return-from find-methods-for-service (values))
do (incf resource-cost-so-far (cost-of-resource r))

(setq resource-probability-so-far (*
resource-probability-so-far probability)))

(when (funcall evaluation-function top-method
resource-cost-so-far resource-probability-so-far)

(do-next resource-cost-so-far
resource-probability-so-far ?sub-services nil
(or top-method ?my-method)))))))
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Appendix B

Scheme Code for Logic Programming

;;; -*- Mode: Scheme; Syntax: Kawa; -*-

;;{{{ Common Debugging Options

(define *rule-tracing* #f)
(define *debug* ’(

;unify
;ask-data
;ask-rule
;other
))

;;}}}

;;{{{ Useful Procedures

(define (atom? x) (not (pair? x)))
(define (printout . L)

(map (lambda (x) (display x)) L)
(newline))

(define (substitute-symbols A T)
(cond ((symbol? T)

(let ((subst (assoc T A)))
(if (not subst) T (cdr subst))))

((not (pair? T)) T)
(#t (cons (substitute-symbols A (car T))

(substitute-symbols A (cdr T))))))

;;}}}

(define *ruleMatcher* :: <edu.mit.aire.util.semantic.RuleMatcher> *ruleMatcherInstance*)

;;{{{ Dealing With Variables

;;; A logic variable is represented by a symbol whose print-name begins
;;; with a question-mark.
(define (is-variable? x)

(and (symbol? x) (char=? (string-ref (symbol->string x) 0) #\?)))

;;; Find all logic variables in a piece of list structure.
;;; Takes an optional initial set of logic variables.

(define (variables-in-thing thing answer)
(cond ((is-variable? thing)

(if (not (memq thing answer))
(cons thing answer)
answer))

((pair? thing)
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(let ((a (variables-in-thing (car thing) answer)))
(variables-in-thing (cdr thing) a)))

(#t answer)))

;;; Dereferencing chases logic variable until it’s either unbound or
;;; bound to something other than a logic variable.

;;; Rule 1: Always dereference logic variables before doing anything
;;; else with them.

(define make-binding cons)
(define bind-var car)
(define bind-val cdr)

(define (dereference variable environment)
(define (looper last-value)

(let ((binding (assoc last-value environment)))
;; if we were looking it up then it had to be a variable. But if
;; we didn’t find it then it’s unbound, so return it.
(cond ((not binding) last-value)

;; We found a value which isn’t another variable so stop
;; here.
((not (is-variable? (bind-val binding))) (bind-val binding))
(#t (looper (bind-val binding) )))))

(looper variable))

(define (dereference-all pattern env)
(cond ((is-variable? pattern)

(dereference pattern env))
((pair? pattern)

(cons (dereference-all (car pattern) env)
(dereference-all (cdr pattern) env)))

(#t pattern)))

;;}}}

;;{{{ Unification of Patterns

(define (make-unification bind success) (list ’unify bind success))
(define (success? u) (caddr u))
(define (get-bindings u) (cadr u))

(define (unify pattern goal bindings)
(if (memq ’unify *debug*)

(printout "unify " pattern " " goal " " bindings))
(cond ((is-variable? pattern)

(unify-variable pattern goal bindings))
((is-variable? goal)

(unify-variable goal pattern bindings))
((equal? pattern goal) (make-unification bindings #t))
((atom? pattern) (make-unification ’() #f))
((atom? goal) (make-unification ’() #f))
(#t

(let ((u (unify (car pattern) (car goal) bindings)))
(if (success? u)

(unify (cdr pattern) (cdr goal) (get-bindings u))
(make-unification ’() #f))))))

(define (unify-variable variable stuff bindings)
(let ((variable-value (dereference variable bindings)))

(if (is-variable? variable-value)
(make-unification (cons (make-binding variable stuff) bindings) #t)
(unify variable-value stuff bindings))))

;;}}}

;;{{{ Ask -- The Major Interface
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;;; Ask pursues a goal, given a binding environment it calls a "Success
;;; Continuation" every time it succeeds in finding a solution to the
;;; goal. It passes the success continuation the binding environment
;;; which unifies the goal to the answer. Success continuations are
;;; functions of one argument: the binding-environment.
;;; This could be haired up to pass in more to the success continuation

;;; Rule 2: Succeed by calling the success continuation
;;; Give up by returning to your caller

(define (ask goal environment continuation)
(ask-data goal environment continuation)
(ask-rules goal environment continuation)

;; could also include ask-questions if you’d like
)

;;; Look for assertions that unify with the goal
;;; Pass the success continuation the bindings resulting from each.
(define (ask-data goal environment continuation)

;; here we ask the Storage mechanism (through RuleMatcher) for the
;; right stuff.
(define (looper tuple-list)

(if (not (null? tuple-list))
(let* ((assertion (car tuple-list))

(extended-binding
(get-bindings (unify assertion goal environment))))

(if (not (null? extended-binding))
(continuation extended-binding))

(looper (cdr tuple-list)))))

; this only works for tuples
(if (= 3 (length goal))

(begin
(if (memq ’ask-data *debug*)

(printout "ask-data " goal " " environment))
(let* ((modified-goal (map (lambda (x)

(if (is-variable? x)
(let ((y (dereference x environment)))

(if (is-variable? y) #!null
y))

x)) goal))
(toss (if (memq ’other *debug*)

(printout " mod-goal: " modified-goal)))
(tuples (apply invoke

(cons
*ruleMatcher*
(cons

’getMatches modified-goal)))))
(if (memq ’other *debug*)

(printout (length tuples) " matches for " goal))
(looper tuples)))))

;;; Just for prettiness
(define (rule-name r) (car r))
(define (rule-if-part r) (cadr r))
(define (rule-then-part r) (caddr r))

(define (ask-rules goal environment continuation)
(define (looper rule-list)

(if (not (null? rule-list))
(begin (ask-rule (car rule-list) goal environment continuation)

(looper (cdr rule-list)))))
(looper (invoke *ruleMatcher* ’getRules)))

;;; Increment once each time you instantiate a rule so as to get new
;;; variable names.
(define *counter* 0)
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;;; Given a set of variables (e.g. foo bar) build a corresponding set
;;; with new names (e.g. foo-n bar-n) and return an alist of new to old
;;; names.
(define (renaming-alist-for-variables variables)

(define (looper var-list ret-list)
(if (not (null? var-list))

(looper (cdr var-list)
(cons (cons (car var-list)

(string->symbol (format #f "˜A-˜D" (car var-list)
*counter*)))

ret-list))
ret-list))

(set! *counter* (+ 1 *counter*))
(looper variables ’()))

(define (renaming-alist-for-rule rule)
(let ((variables (variables-in-thing

(rule-if-part rule)
(variables-in-thing (rule-then-part rule) ’() ))))

(renaming-alist-for-variables variables)))

;;; Ask Rule unifies the Then-Part of rule to the goal. if successful,
;;; it then does an Ask-ANd of the If-part Before it does this, it
;;; renames all the variables. It passes to Ask-And a success
;;; continuation which calls the original success continuation
;;; after optionally tracing the rule.

(define (ask-rule rule goal bindings continuation)
(if (memq ’ask-rule *debug* )

(printout "ask-rule " rule " " goal " " bindings ))
(let* ((renaming (renaming-alist-for-rule rule))

(renamed-then-part (substitute-symbols renaming
(rule-then-part rule)) )

(u (unify goal renamed-then-part bindings))
(extended-bindings (get-bindings u))
(success (success? u)))

(if success
(begin

(if *rule-tracing*
(printout "Attempting Rule "

(rule-name rule) " on goal "
(substitute-symbols bindings goal)))

(ask-and (substitute-symbols renaming (rule-if-part rule))
extended-bindings
(if *rule-tracing*

(lambda (winning-bindings)
(printout "Rule "

(rule-name rule)
" won "
(substitute-symbols winning-bindings

renamed-then-part))
(continuation winning-bindings))

continuation))
(if *rule-tracing*

(printout "Rule "
(rule-name rule)
" can do no more on goal "
(substitute-symbols bindings goal)))))))

;;; Ask-and ASKs each sub-goal in turn passing in the bindings so far
(define (ask-and goals bindings continuation)

(if (memq *debug* ’other)
(printout " ask-and " goals " " bindings))

(if (null? goals)
(continuation bindings)
(ask (car goals)
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bindings
(lambda (extended-bindings)
(ask-and (cdr goals)

extended-bindings
continuation)))))

;;}}}

;;{{{ Internal defrule and deftrigger

(define (defrule-internal name if then)
(invoke *ruleMatcher* ’defineRule name if then))

; trigger definition -- this creates a procedure that matches a tuple
; to a set of rules, and triggers the body if there’s a match. Note
; that the formals are only matched against newly-generated tuples, so
; these are only triggered once for a new object.
(define (deftrigger-internal name formals patterns body)

(invoke *ruleMatcher* ’defineTrigger name
(lambda (test-tuple)

(let* ((unification (unify (car formals) test-tuple ’()))
(success (success? unification))
(new-bindings (get-bindings unification)))

(if success
(begin

(ask-and patterns new-bindings
(lambda (bindings)

(eval (dereference-all body bindings))))))))))
;;}}}
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